Loading…
PARAFAC-based channel estimation and data recovery in nonlinear MIMO spread spectrum communication systems
In this paper, a new tensorial modeling is first proposed for nonlinear multiple-input multiple-output (MIMO) direct sequence spread spectrum communication systems. The channel is modeled as an instantaneous MIMO Volterra system. Then, a direct data approach for joint blind channel estimation and da...
Saved in:
Published in: | Signal processing 2011-02, Vol.91 (2), p.311-322 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a new tensorial modeling is first proposed for nonlinear multiple-input multiple-output (MIMO) direct sequence spread spectrum communication systems. The channel is modeled as an instantaneous MIMO Volterra system. Then, a direct data approach for joint blind channel estimation and data recovery is developed using the parallel factor (PARAFAC) decomposition of a third-order tensor composed of received signals, exploiting space, time and code diversities. A blind channel estimation method based on the PARAFAC decomposition of a fifth-order tensor composed of covariances of the received signals is also proposed, considering phase shift keying (PSK) modulated transmitted signals. The proposed estimation algorithms are evaluated by simulating a nonlinear uplink MIMO radio over fiber (ROF) communication system. |
---|---|
ISSN: | 0165-1684 1872-7557 |
DOI: | 10.1016/j.sigpro.2010.07.010 |