Loading…

roles of polyamines during the lifespan of plants: from development to stress

Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant d...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2014-07, Vol.240 (1), p.1-18
Main Authors: Tiburcio, Antonio F, Altabella, Teresa, Bitrián, Marta, Alcázar, Rubén
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3
cites cdi_FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3
container_end_page 18
container_issue 1
container_start_page 1
container_title Planta
container_volume 240
creator Tiburcio, Antonio F
Altabella, Teresa
Bitrián, Marta
Alcázar, Rubén
description Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or over-accumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
doi_str_mv 10.1007/s00425-014-2055-9
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01253947v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43565368</jstor_id><sourcerecordid>43565368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhS0EopfCA7AAIrGBRWD8M3HMrqqAIl3EArq23GTc5iqJg51U6tvjkHKFWLCyx_7mzIyPGXvO4R0H0O8TgBJYAlelAMTSPGA7rqTIkaofsh1A3oOReMKepHSADEqtH7MToSo0YOod-xpDT6kIvphCf-eGbsxRu8RuvC7mGyr6zlOa3Pib6N04pw-Fj2EoWrqlPkwDjXMxhyLNkVJ6yh551yd6dr-esstPH3-cX5T7b5-_nJ_tywZ5PZdaOm8qkhJaT7VqDTYaGtE45LoRHlUrlHdoat4IElJVBJpf1a0ErL3hXp6yt5vujevtFLvBxTsbXGcvzvZ2PQMuUBqlb3lm32zsFMPPhdJshy411OdhKCzJckQOgmuEjL7-Bz2EJY55kkzJGjkaozPFN6qJIaVI_tgBB7v6YjdfchPKrr5Yk3Ne3isvVwO1x4w_RmRAbECa1ren-Ffp_6i-2JIOaQ7xKKokViirVfTVdu9dsO46dslefhdZIP-ErCiE_AUYAqi0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1538515997</pqid></control><display><type>article</type><title>roles of polyamines during the lifespan of plants: from development to stress</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Link</source><creator>Tiburcio, Antonio F ; Altabella, Teresa ; Bitrián, Marta ; Alcázar, Rubén</creator><creatorcontrib>Tiburcio, Antonio F ; Altabella, Teresa ; Bitrián, Marta ; Alcázar, Rubén</creatorcontrib><description>Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or over-accumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-014-2055-9</identifier><identifier>PMID: 24659098</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Amines ; Biochemistry, Molecular Biology ; Biomedical and Life Sciences ; Biosynthesis ; biotic stress ; Catabolism ; cell division ; Cell Survival ; cell viability ; coumaric acids ; Ecology ; Epigenesis, Genetic ; Forestry ; gamma-aminobutyric acid ; Gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; Homeostasis ; Hydrogen peroxide ; Life Sciences ; Life span ; longevity ; Molecular biology ; Nitric Oxide - metabolism ; Oxidases ; Oxidation ; Oxidative stress ; Plant Development ; Plant Proteins - genetics ; Plant Sciences ; Plants ; Plants - genetics ; Plants - metabolism ; Pollen ; Polyamines ; Polyamines - metabolism ; post-translational modification ; REVIEW ; Signal Transduction ; spermidine ; spermine ; Spermine - analogs &amp; derivatives ; Spermine - metabolism ; stress tolerance ; Stress, Physiological</subject><ispartof>Planta, 2014-07, Vol.240 (1), p.1-18</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3</citedby><cites>FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43565368$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43565368$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24659098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01253947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiburcio, Antonio F</creatorcontrib><creatorcontrib>Altabella, Teresa</creatorcontrib><creatorcontrib>Bitrián, Marta</creatorcontrib><creatorcontrib>Alcázar, Rubén</creatorcontrib><title>roles of polyamines during the lifespan of plants: from development to stress</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or over-accumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.</description><subject>Agriculture</subject><subject>Amines</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>biotic stress</subject><subject>Catabolism</subject><subject>cell division</subject><subject>Cell Survival</subject><subject>cell viability</subject><subject>coumaric acids</subject><subject>Ecology</subject><subject>Epigenesis, Genetic</subject><subject>Forestry</subject><subject>gamma-aminobutyric acid</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Life Sciences</subject><subject>Life span</subject><subject>longevity</subject><subject>Molecular biology</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxidases</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Plant Development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants - genetics</subject><subject>Plants - metabolism</subject><subject>Pollen</subject><subject>Polyamines</subject><subject>Polyamines - metabolism</subject><subject>post-translational modification</subject><subject>REVIEW</subject><subject>Signal Transduction</subject><subject>spermidine</subject><subject>spermine</subject><subject>Spermine - analogs &amp; derivatives</subject><subject>Spermine - metabolism</subject><subject>stress tolerance</subject><subject>Stress, Physiological</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ks1u1TAQhS0EopfCA7AAIrGBRWD8M3HMrqqAIl3EArq23GTc5iqJg51U6tvjkHKFWLCyx_7mzIyPGXvO4R0H0O8TgBJYAlelAMTSPGA7rqTIkaofsh1A3oOReMKepHSADEqtH7MToSo0YOod-xpDT6kIvphCf-eGbsxRu8RuvC7mGyr6zlOa3Pib6N04pw-Fj2EoWrqlPkwDjXMxhyLNkVJ6yh551yd6dr-esstPH3-cX5T7b5-_nJ_tywZ5PZdaOm8qkhJaT7VqDTYaGtE45LoRHlUrlHdoat4IElJVBJpf1a0ErL3hXp6yt5vujevtFLvBxTsbXGcvzvZ2PQMuUBqlb3lm32zsFMPPhdJshy411OdhKCzJckQOgmuEjL7-Bz2EJY55kkzJGjkaozPFN6qJIaVI_tgBB7v6YjdfchPKrr5Yk3Ne3isvVwO1x4w_RmRAbECa1ren-Ffp_6i-2JIOaQ7xKKokViirVfTVdu9dsO46dslefhdZIP-ErCiE_AUYAqi0</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Tiburcio, Antonio F</creator><creator>Altabella, Teresa</creator><creator>Bitrián, Marta</creator><creator>Alcázar, Rubén</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20140701</creationdate><title>roles of polyamines during the lifespan of plants: from development to stress</title><author>Tiburcio, Antonio F ; Altabella, Teresa ; Bitrián, Marta ; Alcázar, Rubén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Amines</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>biotic stress</topic><topic>Catabolism</topic><topic>cell division</topic><topic>Cell Survival</topic><topic>cell viability</topic><topic>coumaric acids</topic><topic>Ecology</topic><topic>Epigenesis, Genetic</topic><topic>Forestry</topic><topic>gamma-aminobutyric acid</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Life Sciences</topic><topic>Life span</topic><topic>longevity</topic><topic>Molecular biology</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxidases</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Plant Development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants - genetics</topic><topic>Plants - metabolism</topic><topic>Pollen</topic><topic>Polyamines</topic><topic>Polyamines - metabolism</topic><topic>post-translational modification</topic><topic>REVIEW</topic><topic>Signal Transduction</topic><topic>spermidine</topic><topic>spermine</topic><topic>Spermine - analogs &amp; derivatives</topic><topic>Spermine - metabolism</topic><topic>stress tolerance</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiburcio, Antonio F</creatorcontrib><creatorcontrib>Altabella, Teresa</creatorcontrib><creatorcontrib>Bitrián, Marta</creatorcontrib><creatorcontrib>Alcázar, Rubén</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiburcio, Antonio F</au><au>Altabella, Teresa</au><au>Bitrián, Marta</au><au>Alcázar, Rubén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>roles of polyamines during the lifespan of plants: from development to stress</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>240</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or over-accumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24659098</pmid><doi>10.1007/s00425-014-2055-9</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2014-07, Vol.240 (1), p.1-18
issn 0032-0935
1432-2048
language eng
recordid cdi_hal_primary_oai_HAL_hal_01253947v1
source JSTOR Archival Journals and Primary Sources Collection; Springer Link
subjects Agriculture
Amines
Biochemistry, Molecular Biology
Biomedical and Life Sciences
Biosynthesis
biotic stress
Catabolism
cell division
Cell Survival
cell viability
coumaric acids
Ecology
Epigenesis, Genetic
Forestry
gamma-aminobutyric acid
Gene expression regulation
Gene Expression Regulation, Plant
Genes
Homeostasis
Hydrogen peroxide
Life Sciences
Life span
longevity
Molecular biology
Nitric Oxide - metabolism
Oxidases
Oxidation
Oxidative stress
Plant Development
Plant Proteins - genetics
Plant Sciences
Plants
Plants - genetics
Plants - metabolism
Pollen
Polyamines
Polyamines - metabolism
post-translational modification
REVIEW
Signal Transduction
spermidine
spermine
Spermine - analogs & derivatives
Spermine - metabolism
stress tolerance
Stress, Physiological
title roles of polyamines during the lifespan of plants: from development to stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=roles%20of%20polyamines%20during%20the%20lifespan%20of%20plants:%20from%20development%20to%20stress&rft.jtitle=Planta&rft.au=Tiburcio,%20Antonio%20F&rft.date=2014-07-01&rft.volume=240&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-014-2055-9&rft_dat=%3Cjstor_hal_p%3E43565368%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-73af96e330dfe84d95c70c2ca517c2f54d24fa5981c2e2346e071b8d3058f91f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1538515997&rft_id=info:pmid/24659098&rft_jstor_id=43565368&rfr_iscdi=true