Loading…

Control of shortwave radiation parameterization on tropical climate SST-forced simulation

SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereb...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2016-09, Vol.47 (5-6), p.1807-1826
Main Authors: Crétat, Julien, Masson, Sébastien, Berthet, Sarah, Samson, Guillaume, Terray, Pascal, Dudhia, Jimy, Pinsard, Françoise, Hourdin, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3
cites cdi_FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3
container_end_page 1826
container_issue 5-6
container_start_page 1807
container_title Climate dynamics
container_volume 47
creator Crétat, Julien
Masson, Sébastien
Berthet, Sarah
Samson, Guillaume
Terray, Pascal
Dudhia, Jimy
Pinsard, Françoise
Hourdin, Christophe
description SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O 3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O 3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that simulates greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced simulations.
doi_str_mv 10.1007/s00382-015-2934-1
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01262857v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470431739</galeid><sourcerecordid>A470431739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3</originalsourceid><addsrcrecordid>eNp10l9rFDEQAPBFLHhWP4BvC4Low9b83Wwej0Nt4UDw2oc-hZCd3KVkN2eSbdVPb9Yt2golgcDwmzAzTFW9wegMIyQ-JoRoRxqEeUMkZQ1-Vq0woyXSSfa8WiFJUSO44C-qlyndIIRZK8iqut6EMcfg62DrdAgx3-lbqKPunc4ujPVRRz1Ahuh-LYFyiz86o31tvBt0hnq3u2xsiAb6Orlh8n_kq-rEap_g9f17Wl19_nS5OW-2X79cbNbbxnCKctN2pVwAbnrNuRB9T7QgTLcGBOstMNTTDiRtpRUES0GExFRQwzvLjLVS09Pqw_LvQXt1jKWi-FMF7dT5eqvmGMKkJR0Xt7jY94s9xvB9gpTV4JIB7_UIYUoKd5i3siN8pm__ozdhimPpZFaklQJ1qKizRe21B-VGG3LUppweBmfCCNaV-JoJxCgWVP6r9j6hmAw_8l5PKamL3bfH9t0DewDt8yEFP83TTY8hXqCJIaUI9u8cMFLzeqhlPcoouJrXQ839kSUnFTvuIT7o78mk34gtui0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812697080</pqid></control><display><type>article</type><title>Control of shortwave radiation parameterization on tropical climate SST-forced simulation</title><source>Springer Link</source><creator>Crétat, Julien ; Masson, Sébastien ; Berthet, Sarah ; Samson, Guillaume ; Terray, Pascal ; Dudhia, Jimy ; Pinsard, Françoise ; Hourdin, Christophe</creator><creatorcontrib>Crétat, Julien ; Masson, Sébastien ; Berthet, Sarah ; Samson, Guillaume ; Terray, Pascal ; Dudhia, Jimy ; Pinsard, Françoise ; Hourdin, Christophe</creatorcontrib><description>SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O 3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O 3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that simulates greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced simulations.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-015-2934-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Analysis ; Atmosphere ; Atmospheric models ; Atmospheric temperature ; Boundary layers ; Climate ; Climatology ; Computer simulation ; Convection ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Hydrologic cycle ; Latent heat ; Ocean temperature ; Oceanography ; Orography ; Radiation (Physics) ; Rainfall ; Scattering coefficient ; Sciences of the Universe ; Spatial distribution ; Surface temperature ; Temperature</subject><ispartof>Climate dynamics, 2016-09, Vol.47 (5-6), p.1807-1826</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3</citedby><cites>FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3</cites><orcidid>0000-0002-3757-8258 ; 0000-0002-1694-8117 ; 0000-0001-5782-2855 ; 0000-0001-7481-6369 ; 0000-0002-3982-6630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01262857$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Crétat, Julien</creatorcontrib><creatorcontrib>Masson, Sébastien</creatorcontrib><creatorcontrib>Berthet, Sarah</creatorcontrib><creatorcontrib>Samson, Guillaume</creatorcontrib><creatorcontrib>Terray, Pascal</creatorcontrib><creatorcontrib>Dudhia, Jimy</creatorcontrib><creatorcontrib>Pinsard, Françoise</creatorcontrib><creatorcontrib>Hourdin, Christophe</creatorcontrib><title>Control of shortwave radiation parameterization on tropical climate SST-forced simulation</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O 3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O 3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that simulates greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced simulations.</description><subject>Absorption</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric temperature</subject><subject>Boundary layers</subject><subject>Climate</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Hydrologic cycle</subject><subject>Latent heat</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Orography</subject><subject>Radiation (Physics)</subject><subject>Rainfall</subject><subject>Scattering coefficient</subject><subject>Sciences of the Universe</subject><subject>Spatial distribution</subject><subject>Surface temperature</subject><subject>Temperature</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10l9rFDEQAPBFLHhWP4BvC4Low9b83Wwej0Nt4UDw2oc-hZCd3KVkN2eSbdVPb9Yt2golgcDwmzAzTFW9wegMIyQ-JoRoRxqEeUMkZQ1-Vq0woyXSSfa8WiFJUSO44C-qlyndIIRZK8iqut6EMcfg62DrdAgx3-lbqKPunc4ujPVRRz1Ahuh-LYFyiz86o31tvBt0hnq3u2xsiAb6Orlh8n_kq-rEap_g9f17Wl19_nS5OW-2X79cbNbbxnCKctN2pVwAbnrNuRB9T7QgTLcGBOstMNTTDiRtpRUES0GExFRQwzvLjLVS09Pqw_LvQXt1jKWi-FMF7dT5eqvmGMKkJR0Xt7jY94s9xvB9gpTV4JIB7_UIYUoKd5i3siN8pm__ozdhimPpZFaklQJ1qKizRe21B-VGG3LUppweBmfCCNaV-JoJxCgWVP6r9j6hmAw_8l5PKamL3bfH9t0DewDt8yEFP83TTY8hXqCJIaUI9u8cMFLzeqhlPcoouJrXQ839kSUnFTvuIT7o78mk34gtui0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Crétat, Julien</creator><creator>Masson, Sébastien</creator><creator>Berthet, Sarah</creator><creator>Samson, Guillaume</creator><creator>Terray, Pascal</creator><creator>Dudhia, Jimy</creator><creator>Pinsard, Françoise</creator><creator>Hourdin, Christophe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3757-8258</orcidid><orcidid>https://orcid.org/0000-0002-1694-8117</orcidid><orcidid>https://orcid.org/0000-0001-5782-2855</orcidid><orcidid>https://orcid.org/0000-0001-7481-6369</orcidid><orcidid>https://orcid.org/0000-0002-3982-6630</orcidid></search><sort><creationdate>20160901</creationdate><title>Control of shortwave radiation parameterization on tropical climate SST-forced simulation</title><author>Crétat, Julien ; Masson, Sébastien ; Berthet, Sarah ; Samson, Guillaume ; Terray, Pascal ; Dudhia, Jimy ; Pinsard, Françoise ; Hourdin, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric temperature</topic><topic>Boundary layers</topic><topic>Climate</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Hydrologic cycle</topic><topic>Latent heat</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Orography</topic><topic>Radiation (Physics)</topic><topic>Rainfall</topic><topic>Scattering coefficient</topic><topic>Sciences of the Universe</topic><topic>Spatial distribution</topic><topic>Surface temperature</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crétat, Julien</creatorcontrib><creatorcontrib>Masson, Sébastien</creatorcontrib><creatorcontrib>Berthet, Sarah</creatorcontrib><creatorcontrib>Samson, Guillaume</creatorcontrib><creatorcontrib>Terray, Pascal</creatorcontrib><creatorcontrib>Dudhia, Jimy</creatorcontrib><creatorcontrib>Pinsard, Françoise</creatorcontrib><creatorcontrib>Hourdin, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crétat, Julien</au><au>Masson, Sébastien</au><au>Berthet, Sarah</au><au>Samson, Guillaume</au><au>Terray, Pascal</au><au>Dudhia, Jimy</au><au>Pinsard, Françoise</au><au>Hourdin, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of shortwave radiation parameterization on tropical climate SST-forced simulation</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>47</volume><issue>5-6</issue><spage>1807</spage><epage>1826</epage><pages>1807-1826</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O 3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O 3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that simulates greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced simulations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-015-2934-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3757-8258</orcidid><orcidid>https://orcid.org/0000-0002-1694-8117</orcidid><orcidid>https://orcid.org/0000-0001-5782-2855</orcidid><orcidid>https://orcid.org/0000-0001-7481-6369</orcidid><orcidid>https://orcid.org/0000-0002-3982-6630</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2016-09, Vol.47 (5-6), p.1807-1826
issn 0930-7575
1432-0894
language eng
recordid cdi_hal_primary_oai_HAL_hal_01262857v1
source Springer Link
subjects Absorption
Analysis
Atmosphere
Atmospheric models
Atmospheric temperature
Boundary layers
Climate
Climatology
Computer simulation
Convection
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Hydrologic cycle
Latent heat
Ocean temperature
Oceanography
Orography
Radiation (Physics)
Rainfall
Scattering coefficient
Sciences of the Universe
Spatial distribution
Surface temperature
Temperature
title Control of shortwave radiation parameterization on tropical climate SST-forced simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20shortwave%20radiation%20parameterization%20on%20tropical%20climate%20SST-forced%20simulation&rft.jtitle=Climate%20dynamics&rft.au=Cr%C3%A9tat,%20Julien&rft.date=2016-09-01&rft.volume=47&rft.issue=5-6&rft.spage=1807&rft.epage=1826&rft.pages=1807-1826&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-015-2934-1&rft_dat=%3Cgale_hal_p%3EA470431739%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-68934ee5cda5577dd2a724a6ce74dfe40d38e9369f721972791373c58f4cff9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812697080&rft_id=info:pmid/&rft_galeid=A470431739&rfr_iscdi=true