Loading…

Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups

The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics 2013-11, Vol.178 (3), p.789-834
Main Authors: Lau, Eike, Nicole, Marc-Hubert, Vasiu, Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33
cites cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33
container_end_page 834
container_issue 3
container_start_page 789
container_title Annals of mathematics
container_volume 178
creator Lau, Eike
Nicole, Marc-Hubert
Vasiu, Adrian
description The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.
doi_str_mv 10.4007/annals.2013.178.3.1
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01265173v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24522726</jstor_id><sourcerecordid>24522726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxfOg4Jx-AhHyJj605k-bpI9jqBOGPjhBfAlpk8yM2pSkm-zbm1LZyzncy-9cLgeAG4zyAiH-oLpOtTEnCNMcc5EnPQMzhBDNCsE-L8BljLs0cs74DHy9D0ENzromqe8i9Ba-mt_Bd7D37XGbPI6EgqrTcBPUwYTo7yJsfLczzbAPJkLrA-wz7Q4uuro1cBv8vo9X4NymT8z1v8_Bx9PjZrnK1m_PL8vFOmtoiYasohXHghbaVjUrOak5IpZqilWlylppITBrElpopjARjNO60gU2SuBEakrn4H66-61a2Qf3o8JReuXkarGW4w5hwkrM6QEnlk5sE3yMwdhTACM51ien-uRYn0z1yaQpdTuldnHw4RQhRUkIJ4z-AVXecRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</creator><creatorcontrib>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</creatorcontrib><description>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</description><identifier>ISSN: 0003-486X</identifier><identifier>DOI: 10.4007/annals.2013.178.3.1</identifier><language>eng</language><publisher>Department of Mathematics at Princeton University</publisher><subject>Algebra ; Homomorphisms ; Integers ; Mathematical rings ; Mathematical theorems ; Mathematics ; Morphisms ; Polygons ; Spatial points ; Truncation</subject><ispartof>Annals of mathematics, 2013-11, Vol.178 (3), p.789-834</ispartof><rights>Copyright © 2013 Princeton University (Mathematics Department)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</citedby><cites>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24522726$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24522726$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01265173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Eike</creatorcontrib><creatorcontrib>Nicole, Marc-Hubert</creatorcontrib><creatorcontrib>Vasiu, Adrian</creatorcontrib><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><title>Annals of mathematics</title><description>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</description><subject>Algebra</subject><subject>Homomorphisms</subject><subject>Integers</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polygons</subject><subject>Spatial points</subject><subject>Truncation</subject><issn>0003-486X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxfOg4Jx-AhHyJj605k-bpI9jqBOGPjhBfAlpk8yM2pSkm-zbm1LZyzncy-9cLgeAG4zyAiH-oLpOtTEnCNMcc5EnPQMzhBDNCsE-L8BljLs0cs74DHy9D0ENzromqe8i9Ba-mt_Bd7D37XGbPI6EgqrTcBPUwYTo7yJsfLczzbAPJkLrA-wz7Q4uuro1cBv8vo9X4NymT8z1v8_Bx9PjZrnK1m_PL8vFOmtoiYasohXHghbaVjUrOak5IpZqilWlylppITBrElpopjARjNO60gU2SuBEakrn4H66-61a2Qf3o8JReuXkarGW4w5hwkrM6QEnlk5sE3yMwdhTACM51ien-uRYn0z1yaQpdTuldnHw4RQhRUkIJ4z-AVXecRg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lau, Eike</creator><creator>Nicole, Marc-Hubert</creator><creator>Vasiu, Adrian</creator><general>Department of Mathematics at Princeton University</general><general>Princeton University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20131101</creationdate><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><author>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Homomorphisms</topic><topic>Integers</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polygons</topic><topic>Spatial points</topic><topic>Truncation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lau, Eike</creatorcontrib><creatorcontrib>Nicole, Marc-Hubert</creatorcontrib><creatorcontrib>Vasiu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Eike</au><au>Nicole, Marc-Hubert</au><au>Vasiu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</atitle><jtitle>Annals of mathematics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>178</volume><issue>3</issue><spage>789</spage><epage>834</epage><pages>789-834</pages><issn>0003-486X</issn><abstract>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</abstract><pub>Department of Mathematics at Princeton University</pub><doi>10.4007/annals.2013.178.3.1</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 2013-11, Vol.178 (3), p.789-834
issn 0003-486X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01265173v1
source JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Homomorphisms
Integers
Mathematical rings
Mathematical theorems
Mathematics
Morphisms
Polygons
Spatial points
Truncation
title Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratifications%20of%20Newton%20polygon%20strata%20and%20Traverso's%20conjectures%20for%20p-divisible%20groups&rft.jtitle=Annals%20of%20mathematics&rft.au=Lau,%20Eike&rft.date=2013-11-01&rft.volume=178&rft.issue=3&rft.spage=789&rft.epage=834&rft.pages=789-834&rft.issn=0003-486X&rft_id=info:doi/10.4007/annals.2013.178.3.1&rft_dat=%3Cjstor_hal_p%3E24522726%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24522726&rfr_iscdi=true