Loading…
Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups
The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-...
Saved in:
Published in: | Annals of mathematics 2013-11, Vol.178 (3), p.789-834 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33 |
container_end_page | 834 |
container_issue | 3 |
container_start_page | 789 |
container_title | Annals of mathematics |
container_volume | 178 |
creator | Lau, Eike Nicole, Marc-Hubert Vasiu, Adrian |
description | The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D. |
doi_str_mv | 10.4007/annals.2013.178.3.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01265173v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24522726</jstor_id><sourcerecordid>24522726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxfOg4Jx-AhHyJj605k-bpI9jqBOGPjhBfAlpk8yM2pSkm-zbm1LZyzncy-9cLgeAG4zyAiH-oLpOtTEnCNMcc5EnPQMzhBDNCsE-L8BljLs0cs74DHy9D0ENzromqe8i9Ba-mt_Bd7D37XGbPI6EgqrTcBPUwYTo7yJsfLczzbAPJkLrA-wz7Q4uuro1cBv8vo9X4NymT8z1v8_Bx9PjZrnK1m_PL8vFOmtoiYasohXHghbaVjUrOak5IpZqilWlylppITBrElpopjARjNO60gU2SuBEakrn4H66-61a2Qf3o8JReuXkarGW4w5hwkrM6QEnlk5sE3yMwdhTACM51ien-uRYn0z1yaQpdTuldnHw4RQhRUkIJ4z-AVXecRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</creator><creatorcontrib>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</creatorcontrib><description>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</description><identifier>ISSN: 0003-486X</identifier><identifier>DOI: 10.4007/annals.2013.178.3.1</identifier><language>eng</language><publisher>Department of Mathematics at Princeton University</publisher><subject>Algebra ; Homomorphisms ; Integers ; Mathematical rings ; Mathematical theorems ; Mathematics ; Morphisms ; Polygons ; Spatial points ; Truncation</subject><ispartof>Annals of mathematics, 2013-11, Vol.178 (3), p.789-834</ispartof><rights>Copyright © 2013 Princeton University (Mathematics Department)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</citedby><cites>FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24522726$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24522726$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01265173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Eike</creatorcontrib><creatorcontrib>Nicole, Marc-Hubert</creatorcontrib><creatorcontrib>Vasiu, Adrian</creatorcontrib><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><title>Annals of mathematics</title><description>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</description><subject>Algebra</subject><subject>Homomorphisms</subject><subject>Integers</subject><subject>Mathematical rings</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polygons</subject><subject>Spatial points</subject><subject>Truncation</subject><issn>0003-486X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxfOg4Jx-AhHyJj605k-bpI9jqBOGPjhBfAlpk8yM2pSkm-zbm1LZyzncy-9cLgeAG4zyAiH-oLpOtTEnCNMcc5EnPQMzhBDNCsE-L8BljLs0cs74DHy9D0ENzromqe8i9Ba-mt_Bd7D37XGbPI6EgqrTcBPUwYTo7yJsfLczzbAPJkLrA-wz7Q4uuro1cBv8vo9X4NymT8z1v8_Bx9PjZrnK1m_PL8vFOmtoiYasohXHghbaVjUrOak5IpZqilWlylppITBrElpopjARjNO60gU2SuBEakrn4H66-61a2Qf3o8JReuXkarGW4w5hwkrM6QEnlk5sE3yMwdhTACM51ien-uRYn0z1yaQpdTuldnHw4RQhRUkIJ4z-AVXecRg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lau, Eike</creator><creator>Nicole, Marc-Hubert</creator><creator>Vasiu, Adrian</creator><general>Department of Mathematics at Princeton University</general><general>Princeton University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20131101</creationdate><title>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</title><author>Lau, Eike ; Nicole, Marc-Hubert ; Vasiu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Homomorphisms</topic><topic>Integers</topic><topic>Mathematical rings</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polygons</topic><topic>Spatial points</topic><topic>Truncation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lau, Eike</creatorcontrib><creatorcontrib>Nicole, Marc-Hubert</creatorcontrib><creatorcontrib>Vasiu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Eike</au><au>Nicole, Marc-Hubert</au><au>Vasiu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups</atitle><jtitle>Annals of mathematics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>178</volume><issue>3</issue><spage>789</spage><epage>834</epage><pages>789-834</pages><issn>0003-486X</issn><abstract>The isomorphism number (resp. isogeny cutoff) of a p-divisible group D over an algebraically closed field of characteristic p is the least positive integer m such that D[pm] determines D up to isomorphism (resp. up to isogeny). We show that these invariants are lower semicontinuous in families of p-divisible groups of constant Newton polygon. Thus they allow refinements of Newton polygon strata. In each isogeny class of p-divisible groups, we determine the maximal value of isogeny cutoffs and give an upper bound for isomorphism numbers, which is shown to be optimal in the isoclinic case. In particular, the latter disproves a conjecture of Traverso. As an application, we answer a question of Zink on the liftability of an endomorphism of D[pm] to D.</abstract><pub>Department of Mathematics at Princeton University</pub><doi>10.4007/annals.2013.178.3.1</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 2013-11, Vol.178 (3), p.789-834 |
issn | 0003-486X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01265173v1 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Algebra Homomorphisms Integers Mathematical rings Mathematical theorems Mathematics Morphisms Polygons Spatial points Truncation |
title | Stratifications of Newton polygon strata and Traverso's conjectures for p-divisible groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T03%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratifications%20of%20Newton%20polygon%20strata%20and%20Traverso's%20conjectures%20for%20p-divisible%20groups&rft.jtitle=Annals%20of%20mathematics&rft.au=Lau,%20Eike&rft.date=2013-11-01&rft.volume=178&rft.issue=3&rft.spage=789&rft.epage=834&rft.pages=789-834&rft.issn=0003-486X&rft_id=info:doi/10.4007/annals.2013.178.3.1&rft_dat=%3Cjstor_hal_p%3E24522726%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-93971834df9b6572b702f3d31a9a5bad8816cc354d6a128673b9d41ea81702d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24522726&rfr_iscdi=true |