Loading…

Reversible charge storage in a single silicon atom

The ultimate miniaturization of electronic devices at the atomic scale with single electrons requires controlling the reversible charge storage in a single atom. However, reversible charge storage is difficult to control as usually only one charge state can be stabilized. Here, combining scanning tu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-12, Vol.88 (24), Article 241406
Main Authors: Bellec, Amandine, Chaput, Laurent, Dujardin, GĂ©rald, Riedel, Damien, Stauffer, Louise, Sonnet, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ultimate miniaturization of electronic devices at the atomic scale with single electrons requires controlling the reversible charge storage in a single atom. However, reversible charge storage is difficult to control as usually only one charge state can be stabilized. Here, combining scanning tunneling microscopy (STM) and density functional theory (DFT), we demonstrate that a single silicon dangling bond of a hydrogenated p-type doped Si(100) surface has two stable charge states (neutral and negatively charged) at low temperature (5 K). Reversible charge storage is achieved using a gate electric field between the STM tip and the surface.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.88.241406