Loading…

Functions of serotonin in hypoxic pulmonary vascular remodeling

In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Se...

Full description

Saved in:
Bibliographic Details
Published in:Cell biochemistry and biophysics 2007-01, Vol.47 (1), p.33-43
Main Authors: Esteve, Juan M, Launay, Jean-Marie, Kellermann, Odile, Maroteaux, Luc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03
cites cdi_FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03
container_end_page 43
container_issue 1
container_start_page 33
container_title Cell biochemistry and biophysics
container_volume 47
creator Esteve, Juan M
Launay, Jean-Marie
Kellermann, Odile
Maroteaux, Luc
description In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.
doi_str_mv 10.1385/CBB:47:1:33
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01274919v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70349315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03</originalsourceid><addsrcrecordid>eNpdkdFLwzAQxoMobk6ffJfigyBSzTVJk-5FtqFOGPiizyFNU9fRNjNph_vvzdhQEA7uOH58990dQpeA74EI9jCbTseUj2FMyBEaAmNZjBNBjkONBYszyNgAnXm_wjhJMKWnaACc4hQzMUSPz32ru8q2PrJl5I2znW2rNgqx3K7td6WjdV83tlVuG22U132tXORMYwtTV-3nOTopVe3NxSGP0Mfz0_tsHi_eXl5nk0Wsg8UuTrUwgKkqMedYJLkheZkVrKBMsJQDB6MMZEUhFJA8UZkSqigFQIkBRKYxGaHbve5S1XLtqib4kVZVcj5ZyF0PQ8Jp2HUDgb3Zs2tnv3rjO9lUXpu6Vq2xvZccE5oRYAG8_geubO_asIdMEk5YStlO7W4PaWe9d6b8HQ9Y7h4gwwMk5RIkIYG-Okj2eWOKP_ZwcfIDT8Z_BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227356451</pqid></control><display><type>article</type><title>Functions of serotonin in hypoxic pulmonary vascular remodeling</title><source>Springer Nature</source><creator>Esteve, Juan M ; Launay, Jean-Marie ; Kellermann, Odile ; Maroteaux, Luc</creator><creatorcontrib>Esteve, Juan M ; Launay, Jean-Marie ; Kellermann, Odile ; Maroteaux, Luc</creatorcontrib><description>In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1385/CBB:47:1:33</identifier><identifier>PMID: 17406058</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Angiotensin II ; Angiotensin II - metabolism ; Animal genetics ; Animals ; Anoxia ; Biochemistry, Molecular Biology ; Cardiology and cardiovascular system ; Cell Division ; Dexfenfluramine ; Dexfenfluramine - pharmacology ; Endothelium, Vascular ; Endothelium, Vascular - metabolism ; Gene Expression Regulation ; Genetics ; Human health and pathology ; Humans ; Hypertension ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Life Sciences ; Models, Biological ; Molecular biology ; Neurobiology ; Neurons and Cognition ; Nitric Oxide ; Nitric Oxide - metabolism ; Oxygen ; Oxygen - metabolism ; Pharmaceutical sciences ; Pharmacology ; Protein Structure, Tertiary ; Psychiatrics and mental health ; Pulmonary arteries ; Pulmonology and respiratory tract ; Rodents ; Serotonin ; Serotonin - metabolism ; Serotonin - physiology ; Signal Transduction</subject><ispartof>Cell biochemistry and biophysics, 2007-01, Vol.47 (1), p.33-43</ispartof><rights>Humana Press Inc. 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03</citedby><cites>FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03</cites><orcidid>0000-0002-9499-8603 ; 0000-0003-4809-1020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17406058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01274919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Esteve, Juan M</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Maroteaux, Luc</creatorcontrib><title>Functions of serotonin in hypoxic pulmonary vascular remodeling</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><description>In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.</description><subject>Angiotensin II</subject><subject>Angiotensin II - metabolism</subject><subject>Animal genetics</subject><subject>Animals</subject><subject>Anoxia</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cardiology and cardiovascular system</subject><subject>Cell Division</subject><subject>Dexfenfluramine</subject><subject>Dexfenfluramine - pharmacology</subject><subject>Endothelium, Vascular</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Genetics</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Nitric Oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Protein Structure, Tertiary</subject><subject>Psychiatrics and mental health</subject><subject>Pulmonary arteries</subject><subject>Pulmonology and respiratory tract</subject><subject>Rodents</subject><subject>Serotonin</subject><subject>Serotonin - metabolism</subject><subject>Serotonin - physiology</subject><subject>Signal Transduction</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkdFLwzAQxoMobk6ffJfigyBSzTVJk-5FtqFOGPiizyFNU9fRNjNph_vvzdhQEA7uOH58990dQpeA74EI9jCbTseUj2FMyBEaAmNZjBNBjkONBYszyNgAnXm_wjhJMKWnaACc4hQzMUSPz32ru8q2PrJl5I2znW2rNgqx3K7td6WjdV83tlVuG22U132tXORMYwtTV-3nOTopVe3NxSGP0Mfz0_tsHi_eXl5nk0Wsg8UuTrUwgKkqMedYJLkheZkVrKBMsJQDB6MMZEUhFJA8UZkSqigFQIkBRKYxGaHbve5S1XLtqib4kVZVcj5ZyF0PQ8Jp2HUDgb3Zs2tnv3rjO9lUXpu6Vq2xvZccE5oRYAG8_geubO_asIdMEk5YStlO7W4PaWe9d6b8HQ9Y7h4gwwMk5RIkIYG-Okj2eWOKP_ZwcfIDT8Z_BA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Esteve, Juan M</creator><creator>Launay, Jean-Marie</creator><creator>Kellermann, Odile</creator><creator>Maroteaux, Luc</creator><general>Springer Nature B.V</general><general>Humana Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9499-8603</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid></search><sort><creationdate>20070101</creationdate><title>Functions of serotonin in hypoxic pulmonary vascular remodeling</title><author>Esteve, Juan M ; Launay, Jean-Marie ; Kellermann, Odile ; Maroteaux, Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Angiotensin II</topic><topic>Angiotensin II - metabolism</topic><topic>Animal genetics</topic><topic>Animals</topic><topic>Anoxia</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cardiology and cardiovascular system</topic><topic>Cell Division</topic><topic>Dexfenfluramine</topic><topic>Dexfenfluramine - pharmacology</topic><topic>Endothelium, Vascular</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Genetics</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Nitric Oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Protein Structure, Tertiary</topic><topic>Psychiatrics and mental health</topic><topic>Pulmonary arteries</topic><topic>Pulmonology and respiratory tract</topic><topic>Rodents</topic><topic>Serotonin</topic><topic>Serotonin - metabolism</topic><topic>Serotonin - physiology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteve, Juan M</creatorcontrib><creatorcontrib>Launay, Jean-Marie</creatorcontrib><creatorcontrib>Kellermann, Odile</creatorcontrib><creatorcontrib>Maroteaux, Luc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteve, Juan M</au><au>Launay, Jean-Marie</au><au>Kellermann, Odile</au><au>Maroteaux, Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functions of serotonin in hypoxic pulmonary vascular remodeling</atitle><jtitle>Cell biochemistry and biophysics</jtitle><addtitle>Cell Biochem Biophys</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>47</volume><issue>1</issue><spage>33</spage><epage>43</epage><pages>33-43</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>17406058</pmid><doi>10.1385/CBB:47:1:33</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9499-8603</orcidid><orcidid>https://orcid.org/0000-0003-4809-1020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-9195
ispartof Cell biochemistry and biophysics, 2007-01, Vol.47 (1), p.33-43
issn 1085-9195
1559-0283
language eng
recordid cdi_hal_primary_oai_HAL_hal_01274919v1
source Springer Nature
subjects Angiotensin II
Angiotensin II - metabolism
Animal genetics
Animals
Anoxia
Biochemistry, Molecular Biology
Cardiology and cardiovascular system
Cell Division
Dexfenfluramine
Dexfenfluramine - pharmacology
Endothelium, Vascular
Endothelium, Vascular - metabolism
Gene Expression Regulation
Genetics
Human health and pathology
Humans
Hypertension
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Life Sciences
Models, Biological
Molecular biology
Neurobiology
Neurons and Cognition
Nitric Oxide
Nitric Oxide - metabolism
Oxygen
Oxygen - metabolism
Pharmaceutical sciences
Pharmacology
Protein Structure, Tertiary
Psychiatrics and mental health
Pulmonary arteries
Pulmonology and respiratory tract
Rodents
Serotonin
Serotonin - metabolism
Serotonin - physiology
Signal Transduction
title Functions of serotonin in hypoxic pulmonary vascular remodeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functions%20of%20serotonin%20in%20hypoxic%20pulmonary%20vascular%20remodeling&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Esteve,%20Juan%20M&rft.date=2007-01-01&rft.volume=47&rft.issue=1&rft.spage=33&rft.epage=43&rft.pages=33-43&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1385/CBB:47:1:33&rft_dat=%3Cproquest_hal_p%3E70349315%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-6c8e104af077082be3bf9d5d458567171eae19dd8a13b2a9a8adf811f01189c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=227356451&rft_id=info:pmid/17406058&rfr_iscdi=true