Loading…

Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations

In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations t...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2015-01, Vol.24 (2), p.508-521
Main Authors: Atyame, Célestine M., Labbé, Pierrick, Rousset, François, Beji, Marwa, Makoundou, Patrick, Duron, Olivier, Dumas, Emilie, Pasteur, Nicole, Bouattour, Ali, Fort, Philippe, Weill, Mylène
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3
cites cdi_FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3
container_end_page 521
container_issue 2
container_start_page 508
container_title Molecular ecology
container_volume 24
creator Atyame, Célestine M.
Labbé, Pierrick
Rousset, François
Beji, Marwa
Makoundou, Patrick
Duron, Olivier
Dumas, Emilie
Pasteur, Nicole
Bouattour, Ali
Fort, Philippe
Weill, Mylène
description In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector‐borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11‐infected males always sterilize wPip31‐infected females; however, while most wPip31‐infected males were compatible with wPip11‐infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia‐based control strategies.
doi_str_mv 10.1111/mec.13035
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01285420v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3559057921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS1ERaeFBS-ALLGBRVr_xE6yrKZlBjQtiyKGneW5c0NdnDiNE_rz9HiYdpCQ6o0l-zvftXUIecvZEU_ruEE44pJJ9YJMuNQqE1X-4yWZsEqLjLNS7pODGK8Z41Io9YrsC5WXQhRsQurLwa48Ugh45-KALSANNXUthKazg9vcLYNfWbhyllof2p_U0tb2fbhNoXawMNCH0GKK0CbEm9ENgdYO_Zp2oRt9coQ2viZ7tfUR3zzuh-Ty09m36TxbfJ19np4sMlCSqUzyXMs8R5ACQIFAK6Ve82ItQAMqpqEo61ytZKVshSVUpQWGCrlUVQXykHzcWq-sN13vGtvfm2CdmZ8szOaMcVGqXLDfPLEftmzXh5sR42AaFwG9ty2GMRqulZCVLLlI6Pv_0Osw9m36R6JyVTJd6fzfcOhDjD3WuxdwZjY1mVST-VtTYt89GsdVg-sd-dRLAo63wK3zeP-8yZyfTZ-U2TaxafFul7D9L6MLWSizvJiZ2ffTYjn_Is1S_gGFkqpp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645806964</pqid></control><display><type>article</type><title>Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Atyame, Célestine M. ; Labbé, Pierrick ; Rousset, François ; Beji, Marwa ; Makoundou, Patrick ; Duron, Olivier ; Dumas, Emilie ; Pasteur, Nicole ; Bouattour, Ali ; Fort, Philippe ; Weill, Mylène</creator><creatorcontrib>Atyame, Célestine M. ; Labbé, Pierrick ; Rousset, François ; Beji, Marwa ; Makoundou, Patrick ; Duron, Olivier ; Dumas, Emilie ; Pasteur, Nicole ; Bouattour, Ali ; Fort, Philippe ; Weill, Mylène</creatorcontrib><description>In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector‐borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11‐infected males always sterilize wPip31‐infected females; however, while most wPip31‐infected males were compatible with wPip11‐infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia‐based control strategies.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13035</identifier><identifier>PMID: 25482270</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal diseases ; Animals ; Arthropods ; Bacterial infections ; Bacterial Typing Techniques ; contact zone ; Crosses, Genetic ; Culex - microbiology ; Culex pipiens mosquito ; cytoplasmic incompatibility ; Female ; Genetics, Population ; Life Sciences ; Male ; Microsatellite Repeats ; Mosquitoes ; Pest control ; Reproduction ; Tunisia ; Wolbachia ; Wolbachia - classification ; Wolbachia - genetics</subject><ispartof>Molecular ecology, 2015-01, Vol.24 (2), p.508-521</ispartof><rights>2014 John Wiley &amp; Sons Ltd</rights><rights>2014 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3</citedby><cites>FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3</cites><orcidid>0000-0002-4528-9229 ; 0000-0002-7426-782X ; 0000-0003-0233-2239 ; 0000-0003-0806-1919 ; 0000-0003-4670-0371 ; 0000-0002-4043-1601 ; 0000-0001-5997-8722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25482270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-reunion.fr/hal-01285420$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Atyame, Célestine M.</creatorcontrib><creatorcontrib>Labbé, Pierrick</creatorcontrib><creatorcontrib>Rousset, François</creatorcontrib><creatorcontrib>Beji, Marwa</creatorcontrib><creatorcontrib>Makoundou, Patrick</creatorcontrib><creatorcontrib>Duron, Olivier</creatorcontrib><creatorcontrib>Dumas, Emilie</creatorcontrib><creatorcontrib>Pasteur, Nicole</creatorcontrib><creatorcontrib>Bouattour, Ali</creatorcontrib><creatorcontrib>Fort, Philippe</creatorcontrib><creatorcontrib>Weill, Mylène</creatorcontrib><title>Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector‐borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11‐infected males always sterilize wPip31‐infected females; however, while most wPip31‐infected males were compatible with wPip11‐infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia‐based control strategies.</description><subject>Animal diseases</subject><subject>Animals</subject><subject>Arthropods</subject><subject>Bacterial infections</subject><subject>Bacterial Typing Techniques</subject><subject>contact zone</subject><subject>Crosses, Genetic</subject><subject>Culex - microbiology</subject><subject>Culex pipiens mosquito</subject><subject>cytoplasmic incompatibility</subject><subject>Female</subject><subject>Genetics, Population</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Microsatellite Repeats</subject><subject>Mosquitoes</subject><subject>Pest control</subject><subject>Reproduction</subject><subject>Tunisia</subject><subject>Wolbachia</subject><subject>Wolbachia - classification</subject><subject>Wolbachia - genetics</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS1ERaeFBS-ALLGBRVr_xE6yrKZlBjQtiyKGneW5c0NdnDiNE_rz9HiYdpCQ6o0l-zvftXUIecvZEU_ruEE44pJJ9YJMuNQqE1X-4yWZsEqLjLNS7pODGK8Z41Io9YrsC5WXQhRsQurLwa48Ugh45-KALSANNXUthKazg9vcLYNfWbhyllof2p_U0tb2fbhNoXawMNCH0GKK0CbEm9ENgdYO_Zp2oRt9coQ2viZ7tfUR3zzuh-Ty09m36TxbfJ19np4sMlCSqUzyXMs8R5ACQIFAK6Ve82ItQAMqpqEo61ytZKVshSVUpQWGCrlUVQXykHzcWq-sN13vGtvfm2CdmZ8szOaMcVGqXLDfPLEftmzXh5sR42AaFwG9ty2GMRqulZCVLLlI6Pv_0Osw9m36R6JyVTJd6fzfcOhDjD3WuxdwZjY1mVST-VtTYt89GsdVg-sd-dRLAo63wK3zeP-8yZyfTZ-U2TaxafFul7D9L6MLWSizvJiZ2ffTYjn_Is1S_gGFkqpp</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Atyame, Célestine M.</creator><creator>Labbé, Pierrick</creator><creator>Rousset, François</creator><creator>Beji, Marwa</creator><creator>Makoundou, Patrick</creator><creator>Duron, Olivier</creator><creator>Dumas, Emilie</creator><creator>Pasteur, Nicole</creator><creator>Bouattour, Ali</creator><creator>Fort, Philippe</creator><creator>Weill, Mylène</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4528-9229</orcidid><orcidid>https://orcid.org/0000-0002-7426-782X</orcidid><orcidid>https://orcid.org/0000-0003-0233-2239</orcidid><orcidid>https://orcid.org/0000-0003-0806-1919</orcidid><orcidid>https://orcid.org/0000-0003-4670-0371</orcidid><orcidid>https://orcid.org/0000-0002-4043-1601</orcidid><orcidid>https://orcid.org/0000-0001-5997-8722</orcidid></search><sort><creationdate>201501</creationdate><title>Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations</title><author>Atyame, Célestine M. ; Labbé, Pierrick ; Rousset, François ; Beji, Marwa ; Makoundou, Patrick ; Duron, Olivier ; Dumas, Emilie ; Pasteur, Nicole ; Bouattour, Ali ; Fort, Philippe ; Weill, Mylène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal diseases</topic><topic>Animals</topic><topic>Arthropods</topic><topic>Bacterial infections</topic><topic>Bacterial Typing Techniques</topic><topic>contact zone</topic><topic>Crosses, Genetic</topic><topic>Culex - microbiology</topic><topic>Culex pipiens mosquito</topic><topic>cytoplasmic incompatibility</topic><topic>Female</topic><topic>Genetics, Population</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Microsatellite Repeats</topic><topic>Mosquitoes</topic><topic>Pest control</topic><topic>Reproduction</topic><topic>Tunisia</topic><topic>Wolbachia</topic><topic>Wolbachia - classification</topic><topic>Wolbachia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atyame, Célestine M.</creatorcontrib><creatorcontrib>Labbé, Pierrick</creatorcontrib><creatorcontrib>Rousset, François</creatorcontrib><creatorcontrib>Beji, Marwa</creatorcontrib><creatorcontrib>Makoundou, Patrick</creatorcontrib><creatorcontrib>Duron, Olivier</creatorcontrib><creatorcontrib>Dumas, Emilie</creatorcontrib><creatorcontrib>Pasteur, Nicole</creatorcontrib><creatorcontrib>Bouattour, Ali</creatorcontrib><creatorcontrib>Fort, Philippe</creatorcontrib><creatorcontrib>Weill, Mylène</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atyame, Célestine M.</au><au>Labbé, Pierrick</au><au>Rousset, François</au><au>Beji, Marwa</au><au>Makoundou, Patrick</au><au>Duron, Olivier</au><au>Dumas, Emilie</au><au>Pasteur, Nicole</au><au>Bouattour, Ali</au><au>Fort, Philippe</au><au>Weill, Mylène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>24</volume><issue>2</issue><spage>508</spage><epage>521</epage><pages>508-521</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector‐borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11‐infected males always sterilize wPip31‐infected females; however, while most wPip31‐infected males were compatible with wPip11‐infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia‐based control strategies.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>25482270</pmid><doi>10.1111/mec.13035</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4528-9229</orcidid><orcidid>https://orcid.org/0000-0002-7426-782X</orcidid><orcidid>https://orcid.org/0000-0003-0233-2239</orcidid><orcidid>https://orcid.org/0000-0003-0806-1919</orcidid><orcidid>https://orcid.org/0000-0003-4670-0371</orcidid><orcidid>https://orcid.org/0000-0002-4043-1601</orcidid><orcidid>https://orcid.org/0000-0001-5997-8722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2015-01, Vol.24 (2), p.508-521
issn 0962-1083
1365-294X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01285420v1
source Wiley-Blackwell Read & Publish Collection
subjects Animal diseases
Animals
Arthropods
Bacterial infections
Bacterial Typing Techniques
contact zone
Crosses, Genetic
Culex - microbiology
Culex pipiens mosquito
cytoplasmic incompatibility
Female
Genetics, Population
Life Sciences
Male
Microsatellite Repeats
Mosquitoes
Pest control
Reproduction
Tunisia
Wolbachia
Wolbachia - classification
Wolbachia - genetics
title Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20coexistence%20of%20incompatible%20Wolbachia%20along%20a%20narrow%20contact%20zone%20in%20mosquito%20field%20populations&rft.jtitle=Molecular%20ecology&rft.au=Atyame,%20C%C3%A9lestine%20M.&rft.date=2015-01&rft.volume=24&rft.issue=2&rft.spage=508&rft.epage=521&rft.pages=508-521&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13035&rft_dat=%3Cproquest_hal_p%3E3559057921%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5305-3146344ec32cc5c2ea336d17d2c6ce506c78f45b395a9e8c98ac0e5e13599c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1645806964&rft_id=info:pmid/25482270&rfr_iscdi=true