Loading…

Combined Temperature and Deformation Measurement During Glass Forming in a Real Scale Setup

An experimental setup has been built and instrumented with non intrusive measurement methods aiming at measuring temperature fields and deformations of a soda-lime-silica glass piece during thermoforming process. A real scale furnace has been used and a realistic thermal load case applied. Infrared...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics 2013-11, Vol.53 (9), p.1773-1781
Main Authors: Soudre-Bau, L., Meshaka, Y., Parent, G., Boulet, P., Le Corre, B., Jeandel, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental setup has been built and instrumented with non intrusive measurement methods aiming at measuring temperature fields and deformations of a soda-lime-silica glass piece during thermoforming process. A real scale furnace has been used and a realistic thermal load case applied. Infrared measurements based on the Christiansen effect have been performed on the present glass sample, providing the temperature distribution on the sample surface through IR images at 7.8 μm. Piece deformation has been registered simultaneously, using a DIC (Digital Image Correlation) technique combined with a fringe projection method. Results have been analysed in a combined manner, showing a non symmetrical deformation despite a quite homogeneous thermal field, which could be explained by mould/glass contact problems. The non intrusive measurement technique has been proven to be relevant for a possible control of the thermal environment of the piece during the thermoforming process. Further tests should be carried out on a wide range of shapes and glass types.
ISSN:0014-4851
1741-2765
DOI:10.1007/s11340-013-9764-z