Loading…

Extratropical Impacts of the Madden–Julian Oscillation over New Zealand from a Weather Regime Perspective

The Madden–Julian oscillation (MJO) signal in the Southern Hemisphere (SH) extratropics during the austral summer (November–March) is investigated over the New Zealand (NZ) sector, using the paradigm of atmospheric weather regimes (WRs), following a classification initially established by Kidson. Th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2016-03, Vol.29 (6), p.2161-2175
Main Authors: Fauchereau, N., Pohl, B., Lorrey, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Madden–Julian oscillation (MJO) signal in the Southern Hemisphere (SH) extratropics during the austral summer (November–March) is investigated over the New Zealand (NZ) sector, using the paradigm of atmospheric weather regimes (WRs), following a classification initially established by Kidson. The MJO is first demonstrated to have significant impacts on daily rainfall anomalies in NZ. It is suggested that orographic effects arising from the interaction between regional atmospheric circulation anomalies and NZ’s topography can explain the spatially heterogeneous precipitation anomalies that are related to MJO activity. These local impacts and circulation anomalies are shown to be better understood as resulting from changes in the occupation statistics of regional WRs (the Kidson types) through the MJO life cycle, although both constructive and destructive effects are demonstrated. The hypothesis of a significant forcing of the MJO over the NZ sector is further supported by lagged composite analyses, which reveal timing characteristics of the delayed regional circulation response compatible with the average propagation speed of the MJO. While the southern annular mode (SAM) has been previously shown to be statistically related to the MJO and is known to be a significant driver of NZ’s climate, no evidence is found that the impact of the MJO over the NZ sector is mediated by the SAM. It is therefore suggested that the MJO directly impacts regional circulation and climate in the NZ region, potentially through extratropical Rossby wave response to tropical diabatic heating. These findings suggest a new potential for predictability for some aspects of NZ’s weather and climate deriving from the MJO beyond the meteorological time scales.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-15-0152.1