Loading…

Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer

The development of quantum plasmonic circuitry requires efficient coupling between quantum emitters and plasmonic waveguides. A major experimental challenge is to simultaneously maximize the surface plasmon propagation length, the coupling efficiency into the plasmonic mode, and the Purcell factor....

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2016-04, Vol.10 (4), p.3968-3976
Main Authors: de Torres, Juan, Ferrand, Patrick, Colas des Francs, Gérard, Wenger, Jérôme
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of quantum plasmonic circuitry requires efficient coupling between quantum emitters and plasmonic waveguides. A major experimental challenge is to simultaneously maximize the surface plasmon propagation length, the coupling efficiency into the plasmonic mode, and the Purcell factor. Addressing this challenge is also the key to enabling long-range energy transfer between quantum nanoemitters. Here, we use a dual-beam scanning confocal microscope to carefully investigate the interactions between fluorescent nanoparticles and surface plasmons on single-crystalline silver nanowires. By exciting the fluorescent nanoparticles via nanowire surface plasmons, we maximize the light–matter interactions and reach coupling efficiencies up to 44% together with 24× lifetime reduction and 4.1 μm propagation lengths. This improved optical performance enables the demonstration of long-range plasmon-mediated fluorescence energy transfer between two nanoparticles separated by micrometer distance. Our results provide guidelines toward practical realizations of efficient long-range fluorescence energy transfer for integrated plasmonics and quantum nano-optics.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.6b00287