Loading…

Non-accretive Schrödinger operators and exponential decay of their eigenfunctions

We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed den...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2017-09, Vol.221 (2), p.779-802
Main Authors: Krejčiřík, D., Raymond, N., Royer, J., Siegl, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393
cites cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393
container_end_page 802
container_issue 2
container_start_page 779
container_title Israel journal of mathematics
container_volume 221
creator Krejčiřík, D.
Raymond, N.
Royer, J.
Siegl, P.
description We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.
doi_str_mv 10.1007/s11856-017-1574-z
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01310683v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941400238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</originalsourceid><addsrcrecordid>eNp1kM9KwzAcx4MoOKcP4C3gyUM0vyRt2uMY6oSh4J9zSNt065hJTbrh9mC-gC9mSkW8eAqEz_dD8kHoHOgVUCqvA0CWpISCJJBIQfYHaARJmpAsAThEI0oZEAaSHaOTEFaUJlwCH6GnB2eJLktvumZr8HO59F-fVWMXxmPXGq875wPWtsLmo3XW2K7Ra1yZUu-wq3G3NI3HplkYW29s2TXOhlN0VOt1MGc_5xi93t68TGdk_nh3P53MSclz3hHGKpEVuq45pFrnMjNVWYvCaEorLWSqszTP60RyKkQlaFKxguU5MBl_lRdRMUaXg3ep16r1zZv2O-V0o2aTuervKHCgaca3ENmLgW29e9-Y0KmV23gbn6cgFyBiHp5FCgaq9C4Eb-pfLVDVZ1ZD5miWqs-s9nHDhk2IbJ_tj_nf0Tf5d4CI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941400238</pqid></control><display><type>article</type><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><source>Springer Nature</source><creator>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</creator><creatorcontrib>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</creatorcontrib><description>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1574-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Decay ; Dirichlet problem ; Eigenvalues ; Eigenvectors ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators ; Spectral Theory ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-09, Vol.221 (2), p.779-802</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</citedby><cites>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</cites><orcidid>0000-0003-0730-0244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01310683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krejčiřík, D.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><creatorcontrib>Royer, J.</creatorcontrib><creatorcontrib>Siegl, P.</creatorcontrib><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Decay</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Spectral Theory</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KwzAcx4MoOKcP4C3gyUM0vyRt2uMY6oSh4J9zSNt065hJTbrh9mC-gC9mSkW8eAqEz_dD8kHoHOgVUCqvA0CWpISCJJBIQfYHaARJmpAsAThEI0oZEAaSHaOTEFaUJlwCH6GnB2eJLktvumZr8HO59F-fVWMXxmPXGq875wPWtsLmo3XW2K7Ra1yZUu-wq3G3NI3HplkYW29s2TXOhlN0VOt1MGc_5xi93t68TGdk_nh3P53MSclz3hHGKpEVuq45pFrnMjNVWYvCaEorLWSqszTP60RyKkQlaFKxguU5MBl_lRdRMUaXg3ep16r1zZv2O-V0o2aTuervKHCgaca3ENmLgW29e9-Y0KmV23gbn6cgFyBiHp5FCgaq9C4Eb-pfLVDVZ1ZD5miWqs-s9nHDhk2IbJ_tj_nf0Tf5d4CI</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Krejčiřík, D.</creator><creator>Raymond, N.</creator><creator>Royer, J.</creator><creator>Siegl, P.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0730-0244</orcidid></search><sort><creationdate>20170901</creationdate><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><author>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Decay</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Spectral Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krejčiřík, D.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><creatorcontrib>Royer, J.</creatorcontrib><creatorcontrib>Siegl, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krejčiřík, D.</au><au>Raymond, N.</au><au>Royer, J.</au><au>Siegl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>221</volume><issue>2</issue><spage>779</spage><epage>802</epage><pages>779-802</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1574-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0730-0244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2017-09, Vol.221 (2), p.779-802
issn 0021-2172
1565-8511
language eng
recordid cdi_hal_primary_oai_HAL_hal_01310683v1
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Decay
Dirichlet problem
Eigenvalues
Eigenvectors
Group Theory and Generalizations
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators
Spectral Theory
Theoretical
title Non-accretive Schrödinger operators and exponential decay of their eigenfunctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-accretive%20Schr%C3%B6dinger%20operators%20and%20exponential%20decay%20of%20their%20eigenfunctions&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Krej%C4%8Di%C5%99%C3%ADk,%20D.&rft.date=2017-09-01&rft.volume=221&rft.issue=2&rft.spage=779&rft.epage=802&rft.pages=779-802&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1574-z&rft_dat=%3Cproquest_hal_p%3E1941400238%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1941400238&rft_id=info:pmid/&rfr_iscdi=true