Loading…
Non-accretive Schrödinger operators and exponential decay of their eigenfunctions
We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed den...
Saved in:
Published in: | Israel journal of mathematics 2017-09, Vol.221 (2), p.779-802 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393 |
container_end_page | 802 |
container_issue | 2 |
container_start_page | 779 |
container_title | Israel journal of mathematics |
container_volume | 221 |
creator | Krejčiřík, D. Raymond, N. Royer, J. Siegl, P. |
description | We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay. |
doi_str_mv | 10.1007/s11856-017-1574-z |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01310683v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1941400238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</originalsourceid><addsrcrecordid>eNp1kM9KwzAcx4MoOKcP4C3gyUM0vyRt2uMY6oSh4J9zSNt065hJTbrh9mC-gC9mSkW8eAqEz_dD8kHoHOgVUCqvA0CWpISCJJBIQfYHaARJmpAsAThEI0oZEAaSHaOTEFaUJlwCH6GnB2eJLktvumZr8HO59F-fVWMXxmPXGq875wPWtsLmo3XW2K7Ra1yZUu-wq3G3NI3HplkYW29s2TXOhlN0VOt1MGc_5xi93t68TGdk_nh3P53MSclz3hHGKpEVuq45pFrnMjNVWYvCaEorLWSqszTP60RyKkQlaFKxguU5MBl_lRdRMUaXg3ep16r1zZv2O-V0o2aTuervKHCgaca3ENmLgW29e9-Y0KmV23gbn6cgFyBiHp5FCgaq9C4Eb-pfLVDVZ1ZD5miWqs-s9nHDhk2IbJ_tj_nf0Tf5d4CI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941400238</pqid></control><display><type>article</type><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><source>Springer Nature</source><creator>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</creator><creatorcontrib>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</creatorcontrib><description>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1574-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Decay ; Dirichlet problem ; Eigenvalues ; Eigenvectors ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators ; Spectral Theory ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-09, Vol.221 (2), p.779-802</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</citedby><cites>FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</cites><orcidid>0000-0003-0730-0244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01310683$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Krejčiřík, D.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><creatorcontrib>Royer, J.</creatorcontrib><creatorcontrib>Siegl, P.</creatorcontrib><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Decay</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Spectral Theory</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KwzAcx4MoOKcP4C3gyUM0vyRt2uMY6oSh4J9zSNt065hJTbrh9mC-gC9mSkW8eAqEz_dD8kHoHOgVUCqvA0CWpISCJJBIQfYHaARJmpAsAThEI0oZEAaSHaOTEFaUJlwCH6GnB2eJLktvumZr8HO59F-fVWMXxmPXGq875wPWtsLmo3XW2K7Ra1yZUu-wq3G3NI3HplkYW29s2TXOhlN0VOt1MGc_5xi93t68TGdk_nh3P53MSclz3hHGKpEVuq45pFrnMjNVWYvCaEorLWSqszTP60RyKkQlaFKxguU5MBl_lRdRMUaXg3ep16r1zZv2O-V0o2aTuervKHCgaca3ENmLgW29e9-Y0KmV23gbn6cgFyBiHp5FCgaq9C4Eb-pfLVDVZ1ZD5miWqs-s9nHDhk2IbJ_tj_nf0Tf5d4CI</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Krejčiřík, D.</creator><creator>Raymond, N.</creator><creator>Royer, J.</creator><creator>Siegl, P.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0730-0244</orcidid></search><sort><creationdate>20170901</creationdate><title>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</title><author>Krejčiřík, D. ; Raymond, N. ; Royer, J. ; Siegl, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Decay</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Spectral Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krejčiřík, D.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><creatorcontrib>Royer, J.</creatorcontrib><creatorcontrib>Siegl, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krejčiřík, D.</au><au>Raymond, N.</au><au>Royer, J.</au><au>Siegl, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-accretive Schrödinger operators and exponential decay of their eigenfunctions</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>221</volume><issue>2</issue><spage>779</spage><epage>802</epage><pages>779-802</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1574-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0730-0244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2017-09, Vol.221 (2), p.779-802 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01310683v1 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Decay Dirichlet problem Eigenvalues Eigenvectors Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators Spectral Theory Theoretical |
title | Non-accretive Schrödinger operators and exponential decay of their eigenfunctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-accretive%20Schr%C3%B6dinger%20operators%20and%20exponential%20decay%20of%20their%20eigenfunctions&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Krej%C4%8Di%C5%99%C3%ADk,%20D.&rft.date=2017-09-01&rft.volume=221&rft.issue=2&rft.spage=779&rft.epage=802&rft.pages=779-802&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1574-z&rft_dat=%3Cproquest_hal_p%3E1941400238%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-22d48baff316aa978edcf4bea00da476a8699f573044d405d2b2991275659b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1941400238&rft_id=info:pmid/&rfr_iscdi=true |