Loading…

Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients

Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2016-05, Vol.54 (5), p.1445-1460
Main Authors: Ruiz, A. M, Lacaze, G, Oefelein, J. C, Mari, R, Cuenot, B, Selle, L, Poinsot, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3
cites cdi_FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3
container_end_page 1460
container_issue 5
container_start_page 1445
container_title AIAA journal
container_volume 54
creator Ruiz, A. M
Lacaze, G
Oefelein, J. C
Mari, R
Cuenot, B
Selle, L
Poinsot, T
description Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems.
doi_str_mv 10.2514/1.J053931
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01321259v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491307544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3</originalsourceid><addsrcrecordid>eNp90V1rFDEUBuAgFly3XvgPBgXRi6k5-ZhkLmu1Xcui4Ad4IyGTOdNJnZ2sScay_95Zt2hRkFyEHJ4czssh5DHQEyZBvISTSyp5zeEeWYDkvORafrlPFpRSKEFI9oA8TOl6fjGlYUG-vps2GL2zQ_EKR9dvbPxWdCEWK3_Vlx9wN4ahTeWsGozFx2mL0UWff304H8JNKm587ou1jVdYvMYx-bwrLqJtPY45HZOjzg4JH93eS_L5_M2ns1W5fn_x9ux0XVqhZS4FbawWTNW80dRR1tXY1F2tbNtRVFopLTvRVkpTRCE1F3aGTdNUumadkC1fkieHviFlb5LzGV3vwjiiywZkJSVTM3pxQL0dzDb6OerOBOvN6nRt9jUKnAGT9Q-Y7fOD3cbwfcKUzcYnh8NgRwxTMqC1AMb3Z0me_kWvwxTHOa5hogZOlRTifwp0VVHN55B_RnQxpBSx-z0nULPfrwFzu9_ZPjtY66290-0f-BPKJJ_x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866083785</pqid></control><display><type>article</type><title>Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients</title><source>Alma/SFX Local Collection</source><creator>Ruiz, A. M ; Lacaze, G ; Oefelein, J. C ; Mari, R ; Cuenot, B ; Selle, L ; Poinsot, T</creator><creatorcontrib>Ruiz, A. M ; Lacaze, G ; Oefelein, J. C ; Mari, R ; Cuenot, B ; Selle, L ; Poinsot, T ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J053931</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Benchmarking ; Benchmarks ; Boundary conditions ; Computational fluid dynamics ; Density gradients ; Density ratio ; Diesel engines ; Direct numerical simulation ; Engineering ; Engineering Sciences ; Engines ; Flow characteristics ; Fluid flow ; Fluids mechanics ; Gas turbine engines ; Gas turbines ; High Reynolds number ; Liquids ; Mathematical models ; Mechanics ; Numerical prediction ; Reynolds number ; Rocket engines ; Rockets ; Solvers ; Supercritical flow</subject><ispartof>AIAA journal, 2016-05, Vol.54 (5), p.1445-1460</ispartof><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/15 and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/15 and $10.00 in correspondence with the CCC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3</citedby><cites>FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3</cites><orcidid>0000-0001-8383-3961 ; 0000-0002-7061-3668 ; 0000-0002-5997-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01321259$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1565527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz, A. M</creatorcontrib><creatorcontrib>Lacaze, G</creatorcontrib><creatorcontrib>Oefelein, J. C</creatorcontrib><creatorcontrib>Mari, R</creatorcontrib><creatorcontrib>Cuenot, B</creatorcontrib><creatorcontrib>Selle, L</creatorcontrib><creatorcontrib>Poinsot, T</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients</title><title>AIAA journal</title><description>Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems.</description><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Density gradients</subject><subject>Density ratio</subject><subject>Diesel engines</subject><subject>Direct numerical simulation</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Flow characteristics</subject><subject>Fluid flow</subject><subject>Fluids mechanics</subject><subject>Gas turbine engines</subject><subject>Gas turbines</subject><subject>High Reynolds number</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Numerical prediction</subject><subject>Reynolds number</subject><subject>Rocket engines</subject><subject>Rockets</subject><subject>Solvers</subject><subject>Supercritical flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90V1rFDEUBuAgFly3XvgPBgXRi6k5-ZhkLmu1Xcui4Ad4IyGTOdNJnZ2sScay_95Zt2hRkFyEHJ4czssh5DHQEyZBvISTSyp5zeEeWYDkvORafrlPFpRSKEFI9oA8TOl6fjGlYUG-vps2GL2zQ_EKR9dvbPxWdCEWK3_Vlx9wN4ahTeWsGozFx2mL0UWff304H8JNKm587ou1jVdYvMYx-bwrLqJtPY45HZOjzg4JH93eS_L5_M2ns1W5fn_x9ux0XVqhZS4FbawWTNW80dRR1tXY1F2tbNtRVFopLTvRVkpTRCE1F3aGTdNUumadkC1fkieHviFlb5LzGV3vwjiiywZkJSVTM3pxQL0dzDb6OerOBOvN6nRt9jUKnAGT9Q-Y7fOD3cbwfcKUzcYnh8NgRwxTMqC1AMb3Z0me_kWvwxTHOa5hogZOlRTifwp0VVHN55B_RnQxpBSx-z0nULPfrwFzu9_ZPjtY66290-0f-BPKJJ_x</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Ruiz, A. M</creator><creator>Lacaze, G</creator><creator>Oefelein, J. C</creator><creator>Mari, R</creator><creator>Cuenot, B</creator><creator>Selle, L</creator><creator>Poinsot, T</creator><general>American Institute of Aeronautics and Astronautics</general><general>AIAA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid><orcidid>https://orcid.org/0000-0002-7061-3668</orcidid><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid></search><sort><creationdate>20160501</creationdate><title>Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients</title><author>Ruiz, A. M ; Lacaze, G ; Oefelein, J. C ; Mari, R ; Cuenot, B ; Selle, L ; Poinsot, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Density gradients</topic><topic>Density ratio</topic><topic>Diesel engines</topic><topic>Direct numerical simulation</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Flow characteristics</topic><topic>Fluid flow</topic><topic>Fluids mechanics</topic><topic>Gas turbine engines</topic><topic>Gas turbines</topic><topic>High Reynolds number</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Numerical prediction</topic><topic>Reynolds number</topic><topic>Rocket engines</topic><topic>Rockets</topic><topic>Solvers</topic><topic>Supercritical flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz, A. M</creatorcontrib><creatorcontrib>Lacaze, G</creatorcontrib><creatorcontrib>Oefelein, J. C</creatorcontrib><creatorcontrib>Mari, R</creatorcontrib><creatorcontrib>Cuenot, B</creatorcontrib><creatorcontrib>Selle, L</creatorcontrib><creatorcontrib>Poinsot, T</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz, A. M</au><au>Lacaze, G</au><au>Oefelein, J. C</au><au>Mari, R</au><au>Cuenot, B</au><au>Selle, L</au><au>Poinsot, T</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients</atitle><jtitle>AIAA journal</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>1445</spage><epage>1460</epage><pages>1445-1460</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Because of the extreme complexity of physical phenomena at high pressure, only limited data are available for solver validation at device-relevant conditions such as liquid rocket engines, gas turbines, or diesel engines. In the present study, a two-dimensional direct numerical simulation is used to establish a benchmark for supercritical flow at a high Reynolds number and high-density ratio at conditions typically encountered in liquid rocket engines. Emphasis has been placed on maintaining the flow characteristics of actual systems with simple boundary conditions, grid spacing, and geometry. Results from two different state-of-the-art codes, with markedly different numerical formalisms, are compared using this benchmark. The strong similarity between the two numerical predictions lends confidence to the physical accuracy of the results. The established database can be used for solver benchmarking and model development at conditions relevant to many propulsion and power systems.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J053931</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid><orcidid>https://orcid.org/0000-0002-7061-3668</orcidid><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2016-05, Vol.54 (5), p.1445-1460
issn 0001-1452
1533-385X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01321259v1
source Alma/SFX Local Collection
subjects Benchmarking
Benchmarks
Boundary conditions
Computational fluid dynamics
Density gradients
Density ratio
Diesel engines
Direct numerical simulation
Engineering
Engineering Sciences
Engines
Flow characteristics
Fluid flow
Fluids mechanics
Gas turbine engines
Gas turbines
High Reynolds number
Liquids
Mathematical models
Mechanics
Numerical prediction
Reynolds number
Rocket engines
Rockets
Solvers
Supercritical flow
title Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Benchmark%20for%20High-Reynolds-Number%20Supercritical%20Flows%20with%20Large%20Density%20Gradients&rft.jtitle=AIAA%20journal&rft.au=Ruiz,%20A.%20M&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-05-01&rft.volume=54&rft.issue=5&rft.spage=1445&rft.epage=1460&rft.pages=1445-1460&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J053931&rft_dat=%3Cproquest_hal_p%3E2491307544%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-40ba842793b80c02f9eb9f97adf0e787785f4d6780ee45834a3b8bbb6892f45d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1866083785&rft_id=info:pmid/&rfr_iscdi=true