Loading…

Soil moisture retrieval over irrigated grassland using X-band SAR data

The aim of this study was to develop an inversion approach to estimate surface soil moisture from X-band SAR data over irrigated grassland areas. This approach simulates a coupling scenario between Synthetic Aperture Radar (SAR) and optical images through the Water Cloud Model (WCM). A time series o...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2016-04, Vol.176, p.202-218
Main Authors: El Hajj, Mohammad, Baghdadi, Nicolas, Zribi, Mehrez, Belaud, Gilles, Cheviron, Bruno, Courault, Dominique, Charron, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to develop an inversion approach to estimate surface soil moisture from X-band SAR data over irrigated grassland areas. This approach simulates a coupling scenario between Synthetic Aperture Radar (SAR) and optical images through the Water Cloud Model (WCM). A time series of SAR (TerraSAR-X and COSMO-SkyMed) and optical (SPOT 4/5 and LANDSAT 7/8) images were acquired over an irrigated grassland region in southeastern France. An inversion technique based on multi-layer perceptron neural networks (NNs) was used to invert the Water Cloud Model (WCM) for soil moisture estimation. Three inversion configurations based on SAR and optical images were defined: (1) HH polarization, (2) HV polarization, and (3) both HH and HV polarizations, all with one vegetation descriptor derived from optical data. The investigated vegetation descriptors were the Normalized Difference Vegetation Index “NDVI”, Leaf Area Index “LAI”, Fraction of Absorbed Photosynthetically Active Radiation “FAPAR”, and the Fractional vegetation COVER “FCOVER”. These vegetation descriptors were derived from optical images. For the three inversion configurations, the NNs were trained and validated using a noisy synthetic dataset generated by the WCM for a wide range of soil moisture and vegetation descriptor values. The trained NNs were then validated from a real dataset composed of X-band SAR backscattering coefficients and vegetation descriptor derived from optical images. The use of X-band SAR measurements in HH polarization (in addition to one vegetation descriptor derived from optical images) yields more precise results on soil moisture (Mv) estimates. In the case of NDVI derived from optical images as the vegetation descriptor, the Root Mean Square Error on Mv estimates was 3.6 Vol.% for NDVI values between 0.45 and 0.75, and 6.1 Vol.% for NDVI between 0.75 and 0.90. Similar results were obtained regardless of the other vegetation descriptor used. •New approach for coupling X-band SAR and optical images for soil moisture retrieval•Modeling radar signal as a function of soil moisture and vegetation parameter•Invert Water Cloud Model for soil moisture retrieval using neural networks•Show the potential and the limitations of X-band images for soil moisture retrieval•This work is in the context of preparing for SENTINEL 1 and 2 missions
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2016.01.027