Loading…

Quasi-diagonalization of Hankel operators

We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functio...

Full description

Saved in:
Bibliographic Details
Published in:Journal d'analyse mathématique (Jerusalem) 2017-10, Vol.133 (1), p.133-182
Main Author: Yafaev, D. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83
cites cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83
container_end_page 182
container_issue 1
container_start_page 133
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 133
creator Yafaev, D. R.
description We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that h = L* σ , which yields a one-to-one correspondence between kernels h ( t ) and sigma-functions σ ( λ ) of Hankel operators. The sigma-function of a self-adjoint Hankel operator H contains substantial information about its spectral properties. Thus we show that the operators H and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel h ( t ) = t −1 in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable ( x ∈ R and its dual variable).
doi_str_mv 10.1007/s11854-017-0030-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01342755v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051194570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4K3gqYfoTLKzyR5L0VYoiKDnkO5m69Z1U5OtoE9vyoqePA0M3_8N8zN2iXCNAOomImrKOKDiABK4OmIjpJy4JqmP2QhAIFe5glN2FuMWgKiQYsSmj3sbG141duM72zZftm98N_H1ZGm7V9dO_M4F2_sQz9lJbdvoLn7mmD3f3T7Nl3z1sLifz1a8lAQ9VyhpLQoHUuQ6qwUpJctcl1TXeUZKZFKSLp2AiqrM2rVWhCovSGOFJNZajtl08L7Y1uxC82bDp_G2McvZyhx2gDITiugDE3s1sLvg3_cu9mbr9yH9EY0AQizSRUgUDlQZfIzB1b9aBHNozwztJbMyh_aMShkxZGJiu40Lf-b_Q9_NHm4V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051194570</pqid></control><display><type>article</type><title>Quasi-diagonalization of Hankel operators</title><source>Springer Nature</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that h = L* σ , which yields a one-to-one correspondence between kernels h ( t ) and sigma-functions σ ( λ ) of Hankel operators. The sigma-function of a self-adjoint Hankel operator H contains substantial information about its spectral properties. Thus we show that the operators H and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel h ( t ) = t −1 in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable ( x ∈ R and its dual variable).</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-017-0030-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Analysis of PDEs ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Equivalence ; Functional Analysis ; Isomorphism ; Kernels ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Mellin transforms ; Operators (mathematics) ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.133-182</ispartof><rights>Hebrew University Magnes Press 2017</rights><rights>Journal dAnalyse Mathematique is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</citedby><cites>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01342755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>Quasi-diagonalization of Hankel operators</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that h = L* σ , which yields a one-to-one correspondence between kernels h ( t ) and sigma-functions σ ( λ ) of Hankel operators. The sigma-function of a self-adjoint Hankel operator H contains substantial information about its spectral properties. Thus we show that the operators H and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel h ( t ) = t −1 in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable ( x ∈ R and its dual variable).</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Functional Analysis</subject><subject>Isomorphism</subject><subject>Kernels</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin transforms</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4K3gqYfoTLKzyR5L0VYoiKDnkO5m69Z1U5OtoE9vyoqePA0M3_8N8zN2iXCNAOomImrKOKDiABK4OmIjpJy4JqmP2QhAIFe5glN2FuMWgKiQYsSmj3sbG141duM72zZftm98N_H1ZGm7V9dO_M4F2_sQz9lJbdvoLn7mmD3f3T7Nl3z1sLifz1a8lAQ9VyhpLQoHUuQ6qwUpJctcl1TXeUZKZFKSLp2AiqrM2rVWhCovSGOFJNZajtl08L7Y1uxC82bDp_G2McvZyhx2gDITiugDE3s1sLvg3_cu9mbr9yH9EY0AQizSRUgUDlQZfIzB1b9aBHNozwztJbMyh_aMShkxZGJiu40Lf-b_Q9_NHm4V</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Yafaev, D. R.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20171001</creationdate><title>Quasi-diagonalization of Hankel operators</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Functional Analysis</topic><topic>Isomorphism</topic><topic>Kernels</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin transforms</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-diagonalization of Hankel operators</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>133</volume><issue>1</issue><spage>133</spage><epage>182</epage><pages>133-182</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that h = L* σ , which yields a one-to-one correspondence between kernels h ( t ) and sigma-functions σ ( λ ) of Hankel operators. The sigma-function of a self-adjoint Hankel operator H contains substantial information about its spectral properties. Thus we show that the operators H and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel h ( t ) = t −1 in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable ( x ∈ R and its dual variable).</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-017-0030-7</doi><tpages>50</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.133-182
issn 0021-7670
1565-8538
language eng
recordid cdi_hal_primary_oai_HAL_hal_01342755v1
source Springer Nature
subjects Abstract Harmonic Analysis
Analysis
Analysis of PDEs
Dynamical Systems and Ergodic Theory
Eigenvalues
Equivalence
Functional Analysis
Isomorphism
Kernels
Laplace transforms
Mathematics
Mathematics and Statistics
Mellin transforms
Operators (mathematics)
Partial Differential Equations
title Quasi-diagonalization of Hankel operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-diagonalization%20of%20Hankel%20operators&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Yafaev,%20D.%20R.&rft.date=2017-10-01&rft.volume=133&rft.issue=1&rft.spage=133&rft.epage=182&rft.pages=133-182&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-017-0030-7&rft_dat=%3Cproquest_hal_p%3E2051194570%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2051194570&rft_id=info:pmid/&rfr_iscdi=true