Loading…
Quasi-diagonalization of Hankel operators
We show that all Hankel operators H realized as integral operators with kernels h ( t + s ) in L 2 (R + ) can be quasi-diagonalized as H = L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution) σ ( λ ), λ ∈ R. We find a scale of spaces of test functio...
Saved in:
Published in: | Journal d'analyse mathématique (Jerusalem) 2017-10, Vol.133 (1), p.133-182 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83 |
container_end_page | 182 |
container_issue | 1 |
container_start_page | 133 |
container_title | Journal d'analyse mathématique (Jerusalem) |
container_volume | 133 |
creator | Yafaev, D. R. |
description | We show that all Hankel operators
H
realized as integral operators with kernels
h
(
t
+
s
) in
L
2
(R
+
) can be quasi-diagonalized as
H
= L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution)
σ
(
λ
),
λ
∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that
h
= L*
σ
, which yields a one-to-one correspondence between kernels
h
(
t
) and sigma-functions
σ
(
λ
) of Hankel operators. The sigma-function of a self-adjoint Hankel operator
H
contains substantial information about its spectral properties. Thus we show that the operators
H
and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel
h
(
t
) =
t
−1
in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable (
x
∈ R and its dual variable). |
doi_str_mv | 10.1007/s11854-017-0030-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01342755v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051194570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4K3gqYfoTLKzyR5L0VYoiKDnkO5m69Z1U5OtoE9vyoqePA0M3_8N8zN2iXCNAOomImrKOKDiABK4OmIjpJy4JqmP2QhAIFe5glN2FuMWgKiQYsSmj3sbG141duM72zZftm98N_H1ZGm7V9dO_M4F2_sQz9lJbdvoLn7mmD3f3T7Nl3z1sLifz1a8lAQ9VyhpLQoHUuQ6qwUpJctcl1TXeUZKZFKSLp2AiqrM2rVWhCovSGOFJNZajtl08L7Y1uxC82bDp_G2McvZyhx2gDITiugDE3s1sLvg3_cu9mbr9yH9EY0AQizSRUgUDlQZfIzB1b9aBHNozwztJbMyh_aMShkxZGJiu40Lf-b_Q9_NHm4V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051194570</pqid></control><display><type>article</type><title>Quasi-diagonalization of Hankel operators</title><source>Springer Nature</source><creator>Yafaev, D. R.</creator><creatorcontrib>Yafaev, D. R.</creatorcontrib><description>We show that all Hankel operators
H
realized as integral operators with kernels
h
(
t
+
s
) in
L
2
(R
+
) can be quasi-diagonalized as
H
= L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution)
σ
(
λ
),
λ
∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that
h
= L*
σ
, which yields a one-to-one correspondence between kernels
h
(
t
) and sigma-functions
σ
(
λ
) of Hankel operators. The sigma-function of a self-adjoint Hankel operator
H
contains substantial information about its spectral properties. Thus we show that the operators
H
and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel
h
(
t
) =
t
−1
in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable (
x
∈ R and its dual variable).</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-017-0030-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Analysis of PDEs ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Equivalence ; Functional Analysis ; Isomorphism ; Kernels ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Mellin transforms ; Operators (mathematics) ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.133-182</ispartof><rights>Hebrew University Magnes Press 2017</rights><rights>Journal dAnalyse Mathematique is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</citedby><cites>FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01342755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yafaev, D. R.</creatorcontrib><title>Quasi-diagonalization of Hankel operators</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>We show that all Hankel operators
H
realized as integral operators with kernels
h
(
t
+
s
) in
L
2
(R
+
) can be quasi-diagonalized as
H
= L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution)
σ
(
λ
),
λ
∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that
h
= L*
σ
, which yields a one-to-one correspondence between kernels
h
(
t
) and sigma-functions
σ
(
λ
) of Hankel operators. The sigma-function of a self-adjoint Hankel operator
H
contains substantial information about its spectral properties. Thus we show that the operators
H
and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel
h
(
t
) =
t
−1
in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable (
x
∈ R and its dual variable).</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Functional Analysis</subject><subject>Isomorphism</subject><subject>Kernels</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mellin transforms</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4K3gqYfoTLKzyR5L0VYoiKDnkO5m69Z1U5OtoE9vyoqePA0M3_8N8zN2iXCNAOomImrKOKDiABK4OmIjpJy4JqmP2QhAIFe5glN2FuMWgKiQYsSmj3sbG141duM72zZftm98N_H1ZGm7V9dO_M4F2_sQz9lJbdvoLn7mmD3f3T7Nl3z1sLifz1a8lAQ9VyhpLQoHUuQ6qwUpJctcl1TXeUZKZFKSLp2AiqrM2rVWhCovSGOFJNZajtl08L7Y1uxC82bDp_G2McvZyhx2gDITiugDE3s1sLvg3_cu9mbr9yH9EY0AQizSRUgUDlQZfIzB1b9aBHNozwztJbMyh_aMShkxZGJiu40Lf-b_Q9_NHm4V</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Yafaev, D. R.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope></search><sort><creationdate>20171001</creationdate><title>Quasi-diagonalization of Hankel operators</title><author>Yafaev, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Functional Analysis</topic><topic>Isomorphism</topic><topic>Kernels</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mellin transforms</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yafaev, D. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yafaev, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-diagonalization of Hankel operators</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>133</volume><issue>1</issue><spage>133</spage><epage>182</epage><pages>133-182</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We show that all Hankel operators
H
realized as integral operators with kernels
h
(
t
+
s
) in
L
2
(R
+
) can be quasi-diagonalized as
H
= L*ΣL. Here L is the Laplace transform, Σ is the operator of multiplication by a function (distribution)
σ
(
λ
),
λ
∈ R. We find a scale of spaces of test functions on which L acts as an isomorphism. Then L* is an isomorphism of the corresponding spaces of distributions. We show that
h
= L*
σ
, which yields a one-to-one correspondence between kernels
h
(
t
) and sigma-functions
σ
(
λ
) of Hankel operators. The sigma-function of a self-adjoint Hankel operator
H
contains substantial information about its spectral properties. Thus we show that the operators
H
and Σ have the same number of positive and negative eigenvalues. In particular, we find necessary and sufficient conditions for sign-definiteness of Hankel operators. These results are illustrated with examples of quasi-Carleman operators generalizing the classical Carleman operator with kernel
h
(
t
) =
t
−1
in various directions. The concept of the sigmafunction leads directly to a criterion (equivalent, of course, to the classical Nehari theorem) for boundedness of Hankel operators. Our construction also shows that every Hankel operator is unitarily equivalent by the Mellin transform to a pseudodifferential operator with amplitude which is a product of functions of one variable (
x
∈ R and its dual variable).</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-017-0030-7</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7670 |
ispartof | Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.133-182 |
issn | 0021-7670 1565-8538 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01342755v1 |
source | Springer Nature |
subjects | Abstract Harmonic Analysis Analysis Analysis of PDEs Dynamical Systems and Ergodic Theory Eigenvalues Equivalence Functional Analysis Isomorphism Kernels Laplace transforms Mathematics Mathematics and Statistics Mellin transforms Operators (mathematics) Partial Differential Equations |
title | Quasi-diagonalization of Hankel operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-diagonalization%20of%20Hankel%20operators&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Yafaev,%20D.%20R.&rft.date=2017-10-01&rft.volume=133&rft.issue=1&rft.spage=133&rft.epage=182&rft.pages=133-182&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-017-0030-7&rft_dat=%3Cproquest_hal_p%3E2051194570%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-7135b29e032684f25773c68c5ff6457243358ce20d5d4aab8751769581d152b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2051194570&rft_id=info:pmid/&rfr_iscdi=true |