Loading…

Travelling waves in nonlinear magneto-inductive lattices

We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Differential Equations 2016-01, Vol.260 (2), p.1717-1746
Main Authors: Agaoglou, M., Fečkan, M., Pospíšil, M., Rothos, V.M., Susanto, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613
cites cdi_FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613
container_end_page 1746
container_issue 2
container_start_page 1717
container_title Journal of Differential Equations
container_volume 260
creator Agaoglou, M.
Fečkan, M.
Pospíšil, M.
Rothos, V.M.
Susanto, H.
description We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our analytical results are found to be in good agreement with direct numerical computations.
doi_str_mv 10.1016/j.jde.2015.09.043
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01343794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022039615005112</els_id><sourcerecordid>S0022039615005112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLdcPSTOfqVZPJWiVih4qedlspmtG9JEsjHivzeh4tHTDC_vMzAPY7ccMg48v6-zuqJMANcZmAyUPGMLDgZSsZLinC0AhEhBmvySXcVYA3Cuc71gxb7HkZomtIfka9piEtqk7dopIOyTIx5aGro0tNWnG8JISYPDEBzFa3bhsYl08zuX7O3pcb_ZprvX55fNepc6KfmQ8sqU3JNWSkGJBktdllx6EBq90Aor73KNyvDCF4UTWqJCQUCrAnPvcy6X7O509x0b-9GHI_bftsNgt-udnTPgUsmVUePc5aeu67sYe_J_AAc7a7K1nTTZWZMFYydNE_NwYmh6YgzU2-gCtY6q0JMbbNWFf-gfFl5vvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Travelling waves in nonlinear magneto-inductive lattices</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Agaoglou, M. ; Fečkan, M. ; Pospíšil, M. ; Rothos, V.M. ; Susanto, H.</creator><creatorcontrib>Agaoglou, M. ; Fečkan, M. ; Pospíšil, M. ; Rothos, V.M. ; Susanto, H.</creatorcontrib><description>We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our analytical results are found to be in good agreement with direct numerical computations.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2015.09.043</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Forced magneto-inductive lattice ; Lattice wave ; Mathematics ; Travelling wave</subject><ispartof>Journal of Differential Equations, 2016-01, Vol.260 (2), p.1717-1746</ispartof><rights>2015 Elsevier Inc.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613</citedby><cites>FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613</cites><orcidid>0000-0002-1071-3077 ; 0000-0003-3354-1615 ; 0000-0002-7385-6737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01343794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Agaoglou, M.</creatorcontrib><creatorcontrib>Fečkan, M.</creatorcontrib><creatorcontrib>Pospíšil, M.</creatorcontrib><creatorcontrib>Rothos, V.M.</creatorcontrib><creatorcontrib>Susanto, H.</creatorcontrib><title>Travelling waves in nonlinear magneto-inductive lattices</title><title>Journal of Differential Equations</title><description>We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our analytical results are found to be in good agreement with direct numerical computations.</description><subject>Forced magneto-inductive lattice</subject><subject>Lattice wave</subject><subject>Mathematics</subject><subject>Travelling wave</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLdcPSTOfqVZPJWiVih4qedlspmtG9JEsjHivzeh4tHTDC_vMzAPY7ccMg48v6-zuqJMANcZmAyUPGMLDgZSsZLinC0AhEhBmvySXcVYA3Cuc71gxb7HkZomtIfka9piEtqk7dopIOyTIx5aGro0tNWnG8JISYPDEBzFa3bhsYl08zuX7O3pcb_ZprvX55fNepc6KfmQ8sqU3JNWSkGJBktdllx6EBq90Aor73KNyvDCF4UTWqJCQUCrAnPvcy6X7O509x0b-9GHI_bftsNgt-udnTPgUsmVUePc5aeu67sYe_J_AAc7a7K1nTTZWZMFYydNE_NwYmh6YgzU2-gCtY6q0JMbbNWFf-gfFl5vvA</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Agaoglou, M.</creator><creator>Fečkan, M.</creator><creator>Pospíšil, M.</creator><creator>Rothos, V.M.</creator><creator>Susanto, H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1071-3077</orcidid><orcidid>https://orcid.org/0000-0003-3354-1615</orcidid><orcidid>https://orcid.org/0000-0002-7385-6737</orcidid></search><sort><creationdate>20160115</creationdate><title>Travelling waves in nonlinear magneto-inductive lattices</title><author>Agaoglou, M. ; Fečkan, M. ; Pospíšil, M. ; Rothos, V.M. ; Susanto, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Forced magneto-inductive lattice</topic><topic>Lattice wave</topic><topic>Mathematics</topic><topic>Travelling wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agaoglou, M.</creatorcontrib><creatorcontrib>Fečkan, M.</creatorcontrib><creatorcontrib>Pospíšil, M.</creatorcontrib><creatorcontrib>Rothos, V.M.</creatorcontrib><creatorcontrib>Susanto, H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agaoglou, M.</au><au>Fečkan, M.</au><au>Pospíšil, M.</au><au>Rothos, V.M.</au><au>Susanto, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travelling waves in nonlinear magneto-inductive lattices</atitle><jtitle>Journal of Differential Equations</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>260</volume><issue>2</issue><spage>1717</spage><epage>1746</epage><pages>1717-1746</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our analytical results are found to be in good agreement with direct numerical computations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2015.09.043</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-1071-3077</orcidid><orcidid>https://orcid.org/0000-0003-3354-1615</orcidid><orcidid>https://orcid.org/0000-0002-7385-6737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2016-01, Vol.260 (2), p.1717-1746
issn 0022-0396
1090-2732
language eng
recordid cdi_hal_primary_oai_HAL_hal_01343794v1
source ScienceDirect Freedom Collection 2022-2024
subjects Forced magneto-inductive lattice
Lattice wave
Mathematics
Travelling wave
title Travelling waves in nonlinear magneto-inductive lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travelling%20waves%20in%20nonlinear%20magneto-inductive%20lattices&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Agaoglou,%20M.&rft.date=2016-01-15&rft.volume=260&rft.issue=2&rft.spage=1717&rft.epage=1746&rft.pages=1717-1746&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2015.09.043&rft_dat=%3Celsevier_hal_p%3ES0022039615005112%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-1d9b1fe54440ba9ab5bb13f025af254adfc65a4918f88c253a4a2e0e78a6ff613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true