Loading…
Bit patterned media based on block copolymer directed assembly with narrow magnetic switching field distribution
Electron-beam (E-beam) directed assembly, which combines the long-range phase and placement registration of e-beam lithography with the sharp dot size and spacing uniformity of block copolymer self assembly, is considered highly promising for fabricating templates that meet the tight magnetic specif...
Saved in:
Published in: | Applied physics letters 2010-02, Vol.96 (5) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron-beam (E-beam) directed assembly, which combines the long-range phase and placement registration of e-beam lithography with the sharp dot size and spacing uniformity of block copolymer self assembly, is considered highly promising for fabricating templates that meet the tight magnetic specifications required for write synchronization in bit patterned media magnetic recording systems. In our study, we show that this approach also yields a narrower magnetic switching field distribution (SFD) than e-beam patterning or block copolymer self-assembly alone. We demonstrate that the pattern uniformity, i.e., island diameter and placement distributions are also important for achieving tight magnetic SFDs. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3293301 |