Loading…
Translational and rotational temperatures of a 2D vibrated granular gas in microgravity
. We present an experimental study performed on a vibrated granular gas enclosed into a 2D rectangular cell. Experiments are performed in microgravity conditions achieved during parabolic flights. High speed video recording and optical tracking allow to obtain the full kinematics (translation and ro...
Saved in:
Published in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2015-02, Vol.38 (2), p.93-93, Article 8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | .
We present an experimental study performed on a vibrated granular gas enclosed into a 2D rectangular cell. Experiments are performed in microgravity conditions achieved during parabolic flights. High speed video recording and optical tracking allow to obtain the full kinematics (translation and rotation) of the particles. The inelastic parameters are retrieved from the experimental trajectories as well as the translational and rotational velocity distributions. We report that the experimental ratio of translational
versus
rotational temperature decreases with the density of the medium but increases with the driving velocity of the cell. These experimental results are compared with existing theories and we point out the differences observed. We also present a model which fairly predicts the equilibrium experimental temperatures along the direction of vibration.
Graphical abstract |
---|---|
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2015-15008-5 |