Loading…

Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems

In this article a semi-smooth Newton method for frictional two-body contact problems and a solution algorithm for the resulting sequence of linear systems are presented. It is based on a mixed variational formulation of the problem and a discretization by finite elements of higher-order. General fri...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2016-09, Vol.309, p.131-151
Main Authors: Blum, Heribert, Frohne, Hannah, Frohne, Jörg, Rademacher, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73
cites cdi_FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73
container_end_page 151
container_issue
container_start_page 131
container_title Computer methods in applied mechanics and engineering
container_volume 309
creator Blum, Heribert
Frohne, Hannah
Frohne, Jörg
Rademacher, Andreas
description In this article a semi-smooth Newton method for frictional two-body contact problems and a solution algorithm for the resulting sequence of linear systems are presented. It is based on a mixed variational formulation of the problem and a discretization by finite elements of higher-order. General friction laws depending on the normal stresses and elasto-plastic material behavior with linear isotropic hardening are considered. Numerical results show the efficiency of the presented algorithm.
doi_str_mv 10.1016/j.cma.2016.06.004
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01371133v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516305047</els_id><sourcerecordid>S0045782516305047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73</originalsourceid><addsrcrecordid>eNp9UMtqIzEQFGEX4s3mA3LTNRA5rXkPORmTFzi7h92chdzqycjMWEYSed3y59HEIcc0Bd1UVzV0MXYiYS5BVuebOY56nqVxDglQHLCZbOpWZDJvfrBZYkpRN1l5yH6FsIFUjcxm7O0fjVaE0bnY8z_0FN2WjxR7ZwLvnOejfSbDry7vuLEBPUX7qqN128Bdx3v70JMXzhvyH-rOW5y2ejjjNOgQndhNzSKPT06snXnh6LZRY-Q779YDjeE3-9npIdDxZz9i91eX_5c3YvX3-na5WAnM6yIKCYSmaqsOyqrNDDZtC7JuCglG10DGQFPU-bqCEgARuqrJINNlVxDmmcQ6P2Kn-7u9HtTO21H7F-W0VTeLlZo4kHktZZ4_yqSVey16F4Kn7ssgQU15q41KeaspbwUJUCTPxd5D6YlHS14FtLRFMtYTRmWc_cb9Dk1QiWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Blum, Heribert ; Frohne, Hannah ; Frohne, Jörg ; Rademacher, Andreas</creator><creatorcontrib>Blum, Heribert ; Frohne, Hannah ; Frohne, Jörg ; Rademacher, Andreas</creatorcontrib><description>In this article a semi-smooth Newton method for frictional two-body contact problems and a solution algorithm for the resulting sequence of linear systems are presented. It is based on a mixed variational formulation of the problem and a discretization by finite elements of higher-order. General friction laws depending on the normal stresses and elasto-plastic material behavior with linear isotropic hardening are considered. Numerical results show the efficiency of the presented algorithm.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.06.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Complementarity function ; Engineering Sciences ; Frictional contact ; Hardening ; Higher-order FEM ; Plasticity ; Semi-smooth Newton method</subject><ispartof>Computer methods in applied mechanics and engineering, 2016-09, Vol.309, p.131-151</ispartof><rights>2016 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73</citedby><cites>FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73</cites><orcidid>0000-0003-4979-6305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01371133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blum, Heribert</creatorcontrib><creatorcontrib>Frohne, Hannah</creatorcontrib><creatorcontrib>Frohne, Jörg</creatorcontrib><creatorcontrib>Rademacher, Andreas</creatorcontrib><title>Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems</title><title>Computer methods in applied mechanics and engineering</title><description>In this article a semi-smooth Newton method for frictional two-body contact problems and a solution algorithm for the resulting sequence of linear systems are presented. It is based on a mixed variational formulation of the problem and a discretization by finite elements of higher-order. General friction laws depending on the normal stresses and elasto-plastic material behavior with linear isotropic hardening are considered. Numerical results show the efficiency of the presented algorithm.</description><subject>Complementarity function</subject><subject>Engineering Sciences</subject><subject>Frictional contact</subject><subject>Hardening</subject><subject>Higher-order FEM</subject><subject>Plasticity</subject><subject>Semi-smooth Newton method</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqIzEQFGEX4s3mA3LTNRA5rXkPORmTFzi7h92chdzqycjMWEYSed3y59HEIcc0Bd1UVzV0MXYiYS5BVuebOY56nqVxDglQHLCZbOpWZDJvfrBZYkpRN1l5yH6FsIFUjcxm7O0fjVaE0bnY8z_0FN2WjxR7ZwLvnOejfSbDry7vuLEBPUX7qqN128Bdx3v70JMXzhvyH-rOW5y2ejjjNOgQndhNzSKPT06snXnh6LZRY-Q779YDjeE3-9npIdDxZz9i91eX_5c3YvX3-na5WAnM6yIKCYSmaqsOyqrNDDZtC7JuCglG10DGQFPU-bqCEgARuqrJINNlVxDmmcQ6P2Kn-7u9HtTO21H7F-W0VTeLlZo4kHktZZ4_yqSVey16F4Kn7ssgQU15q41KeaspbwUJUCTPxd5D6YlHS14FtLRFMtYTRmWc_cb9Dk1QiWs</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Blum, Heribert</creator><creator>Frohne, Hannah</creator><creator>Frohne, Jörg</creator><creator>Rademacher, Andreas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4979-6305</orcidid></search><sort><creationdate>20160901</creationdate><title>Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems</title><author>Blum, Heribert ; Frohne, Hannah ; Frohne, Jörg ; Rademacher, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complementarity function</topic><topic>Engineering Sciences</topic><topic>Frictional contact</topic><topic>Hardening</topic><topic>Higher-order FEM</topic><topic>Plasticity</topic><topic>Semi-smooth Newton method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blum, Heribert</creatorcontrib><creatorcontrib>Frohne, Hannah</creatorcontrib><creatorcontrib>Frohne, Jörg</creatorcontrib><creatorcontrib>Rademacher, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Heribert</au><au>Frohne, Hannah</au><au>Frohne, Jörg</au><au>Rademacher, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>309</volume><spage>131</spage><epage>151</epage><pages>131-151</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article a semi-smooth Newton method for frictional two-body contact problems and a solution algorithm for the resulting sequence of linear systems are presented. It is based on a mixed variational formulation of the problem and a discretization by finite elements of higher-order. General friction laws depending on the normal stresses and elasto-plastic material behavior with linear isotropic hardening are considered. Numerical results show the efficiency of the presented algorithm.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.06.004</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4979-6305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2016-09, Vol.309, p.131-151
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01371133v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Complementarity function
Engineering Sciences
Frictional contact
Hardening
Higher-order FEM
Plasticity
Semi-smooth Newton method
title Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-smooth%20Newton%20methods%20for%20mixed%20FEM%20discretizations%20of%20higher-order%20for%20frictional,%20elasto-plastic%20two-body%20contact%20problems&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Blum,%20Heribert&rft.date=2016-09-01&rft.volume=309&rft.spage=131&rft.epage=151&rft.pages=131-151&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.06.004&rft_dat=%3Celsevier_hal_p%3ES0045782516305047%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-10ecd696f05692dc8990178410da70edd08473b60500cc0f68202a5f4ec321c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true