Loading…

Experience with benchmarking dependability and performance of MapReduce systems

MapReduce provides a convenient means for distributed data processing and automatic parallel execution on clusters of machines. It has various applications and is used by several services featuring fault tolerance and scalability. Many studies investigated the dependability and performance of MapRed...

Full description

Saved in:
Bibliographic Details
Published in:Performance evaluation 2016-07, Vol.101, p.1-19
Main Authors: Sangroya, Amit, Bouchenak, Sara, Serrano, Damián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13
cites cdi_FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13
container_end_page 19
container_issue
container_start_page 1
container_title Performance evaluation
container_volume 101
creator Sangroya, Amit
Bouchenak, Sara
Serrano, Damián
description MapReduce provides a convenient means for distributed data processing and automatic parallel execution on clusters of machines. It has various applications and is used by several services featuring fault tolerance and scalability. Many studies investigated the dependability and performance of MapReduce, ranging from job scheduling to data placement and replication, adaptive and on-demand fault tolerance to new fault tolerance models. However, the ad-hoc and overly simplified setting used to evaluate most MapReduce fault tolerance and performance improvement solutions poses significant challenges to the analysis and comparison of the effectiveness of these solutions. The paper precisely addresses this issue and presents MRBS, a comprehensive benchmark suite for evaluating the dependability and performance of MapReduce systems. MRBS includes five benchmarks covering several application domains and a wide range of execution scenarios such as data-intensive vs. compute-intensive applications, or batch applications vs. online interactive applications. MRBS allows to inject various workloads, dataloads and faultloads, and produces extensive reliability, availability and performance statistics. We implemented the MRBS benchmark suite for Hadoop MapReduce, and we illustrate its use with various case studies running on Amazon EC2 and on a private cloud.
doi_str_mv 10.1016/j.peva.2016.04.001
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01372628v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166531616300207</els_id><sourcerecordid>1825475158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gywpDgz8SVWKqqUKSiSqgDm-U4F-qSJsFOC_33OAQxMvl8ft7T-UHomuCEYJLebZMWDjqhoU4wTzAmJ2hEZEbjjIvXUzQKD2ksGEnP0YX3W4yxyBgeodX8qwVnoTYQfdpuE-Wh3Oy0e7f1W1RAC3Whc1vZ7hjpuogCXDZup3u-KaNn3b5AsQ8Xf_Qd7PwlOit15eHq9xyj9cN8PVvEy9Xj02y6jA1Lsy5mQBg1XEggucGFTA0VuJSggecwybMMUzFhuZY8ZRMINBGlKTiVHCTPCRuj22HsRleqdTYsfFSNtmoxXaq-hwnLaErloWdvBrZ1zccefKd21huoKl1Ds_eKSCp4JoiQAaUDalzjvYPybzbBqhettqoXrXrRCnMVRIfQ_RCC8N-DBae8-RFaWAemU0Vj_4t_AwI6hrU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825475158</pqid></control><display><type>article</type><title>Experience with benchmarking dependability and performance of MapReduce systems</title><source>ScienceDirect Freedom Collection</source><creator>Sangroya, Amit ; Bouchenak, Sara ; Serrano, Damián</creator><creatorcontrib>Sangroya, Amit ; Bouchenak, Sara ; Serrano, Damián</creatorcontrib><description>MapReduce provides a convenient means for distributed data processing and automatic parallel execution on clusters of machines. It has various applications and is used by several services featuring fault tolerance and scalability. Many studies investigated the dependability and performance of MapReduce, ranging from job scheduling to data placement and replication, adaptive and on-demand fault tolerance to new fault tolerance models. However, the ad-hoc and overly simplified setting used to evaluate most MapReduce fault tolerance and performance improvement solutions poses significant challenges to the analysis and comparison of the effectiveness of these solutions. The paper precisely addresses this issue and presents MRBS, a comprehensive benchmark suite for evaluating the dependability and performance of MapReduce systems. MRBS includes five benchmarks covering several application domains and a wide range of execution scenarios such as data-intensive vs. compute-intensive applications, or batch applications vs. online interactive applications. MRBS allows to inject various workloads, dataloads and faultloads, and produces extensive reliability, availability and performance statistics. We implemented the MRBS benchmark suite for Hadoop MapReduce, and we illustrate its use with various case studies running on Amazon EC2 and on a private cloud.</description><identifier>ISSN: 0166-5316</identifier><identifier>EISSN: 1872-745X</identifier><identifier>DOI: 10.1016/j.peva.2016.04.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Automation ; Benchmarking ; Clouds ; Clusters ; Computer Science ; Dependability ; Distributed, Parallel, and Cluster Computing ; Emerging Technologies ; Fault tolerance ; Hadoop ; MapReduce ; Mathematical models ; Modulus of rupture in bending ; Statistics ; Systems and Control</subject><ispartof>Performance evaluation, 2016-07, Vol.101, p.1-19</ispartof><rights>2016 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13</citedby><cites>FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13</cites><orcidid>0000-0001-9825-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01372628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangroya, Amit</creatorcontrib><creatorcontrib>Bouchenak, Sara</creatorcontrib><creatorcontrib>Serrano, Damián</creatorcontrib><title>Experience with benchmarking dependability and performance of MapReduce systems</title><title>Performance evaluation</title><description>MapReduce provides a convenient means for distributed data processing and automatic parallel execution on clusters of machines. It has various applications and is used by several services featuring fault tolerance and scalability. Many studies investigated the dependability and performance of MapReduce, ranging from job scheduling to data placement and replication, adaptive and on-demand fault tolerance to new fault tolerance models. However, the ad-hoc and overly simplified setting used to evaluate most MapReduce fault tolerance and performance improvement solutions poses significant challenges to the analysis and comparison of the effectiveness of these solutions. The paper precisely addresses this issue and presents MRBS, a comprehensive benchmark suite for evaluating the dependability and performance of MapReduce systems. MRBS includes five benchmarks covering several application domains and a wide range of execution scenarios such as data-intensive vs. compute-intensive applications, or batch applications vs. online interactive applications. MRBS allows to inject various workloads, dataloads and faultloads, and produces extensive reliability, availability and performance statistics. We implemented the MRBS benchmark suite for Hadoop MapReduce, and we illustrate its use with various case studies running on Amazon EC2 and on a private cloud.</description><subject>Automation</subject><subject>Benchmarking</subject><subject>Clouds</subject><subject>Clusters</subject><subject>Computer Science</subject><subject>Dependability</subject><subject>Distributed, Parallel, and Cluster Computing</subject><subject>Emerging Technologies</subject><subject>Fault tolerance</subject><subject>Hadoop</subject><subject>MapReduce</subject><subject>Mathematical models</subject><subject>Modulus of rupture in bending</subject><subject>Statistics</subject><subject>Systems and Control</subject><issn>0166-5316</issn><issn>1872-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gywpDgz8SVWKqqUKSiSqgDm-U4F-qSJsFOC_33OAQxMvl8ft7T-UHomuCEYJLebZMWDjqhoU4wTzAmJ2hEZEbjjIvXUzQKD2ksGEnP0YX3W4yxyBgeodX8qwVnoTYQfdpuE-Wh3Oy0e7f1W1RAC3Whc1vZ7hjpuogCXDZup3u-KaNn3b5AsQ8Xf_Qd7PwlOit15eHq9xyj9cN8PVvEy9Xj02y6jA1Lsy5mQBg1XEggucGFTA0VuJSggecwybMMUzFhuZY8ZRMINBGlKTiVHCTPCRuj22HsRleqdTYsfFSNtmoxXaq-hwnLaErloWdvBrZ1zccefKd21huoKl1Ds_eKSCp4JoiQAaUDalzjvYPybzbBqhettqoXrXrRCnMVRIfQ_RCC8N-DBae8-RFaWAemU0Vj_4t_AwI6hrU</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Sangroya, Amit</creator><creator>Bouchenak, Sara</creator><creator>Serrano, Damián</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9825-353X</orcidid></search><sort><creationdate>201607</creationdate><title>Experience with benchmarking dependability and performance of MapReduce systems</title><author>Sangroya, Amit ; Bouchenak, Sara ; Serrano, Damián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automation</topic><topic>Benchmarking</topic><topic>Clouds</topic><topic>Clusters</topic><topic>Computer Science</topic><topic>Dependability</topic><topic>Distributed, Parallel, and Cluster Computing</topic><topic>Emerging Technologies</topic><topic>Fault tolerance</topic><topic>Hadoop</topic><topic>MapReduce</topic><topic>Mathematical models</topic><topic>Modulus of rupture in bending</topic><topic>Statistics</topic><topic>Systems and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangroya, Amit</creatorcontrib><creatorcontrib>Bouchenak, Sara</creatorcontrib><creatorcontrib>Serrano, Damián</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Performance evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangroya, Amit</au><au>Bouchenak, Sara</au><au>Serrano, Damián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experience with benchmarking dependability and performance of MapReduce systems</atitle><jtitle>Performance evaluation</jtitle><date>2016-07</date><risdate>2016</risdate><volume>101</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0166-5316</issn><eissn>1872-745X</eissn><abstract>MapReduce provides a convenient means for distributed data processing and automatic parallel execution on clusters of machines. It has various applications and is used by several services featuring fault tolerance and scalability. Many studies investigated the dependability and performance of MapReduce, ranging from job scheduling to data placement and replication, adaptive and on-demand fault tolerance to new fault tolerance models. However, the ad-hoc and overly simplified setting used to evaluate most MapReduce fault tolerance and performance improvement solutions poses significant challenges to the analysis and comparison of the effectiveness of these solutions. The paper precisely addresses this issue and presents MRBS, a comprehensive benchmark suite for evaluating the dependability and performance of MapReduce systems. MRBS includes five benchmarks covering several application domains and a wide range of execution scenarios such as data-intensive vs. compute-intensive applications, or batch applications vs. online interactive applications. MRBS allows to inject various workloads, dataloads and faultloads, and produces extensive reliability, availability and performance statistics. We implemented the MRBS benchmark suite for Hadoop MapReduce, and we illustrate its use with various case studies running on Amazon EC2 and on a private cloud.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.peva.2016.04.001</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9825-353X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-5316
ispartof Performance evaluation, 2016-07, Vol.101, p.1-19
issn 0166-5316
1872-745X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01372628v1
source ScienceDirect Freedom Collection
subjects Automation
Benchmarking
Clouds
Clusters
Computer Science
Dependability
Distributed, Parallel, and Cluster Computing
Emerging Technologies
Fault tolerance
Hadoop
MapReduce
Mathematical models
Modulus of rupture in bending
Statistics
Systems and Control
title Experience with benchmarking dependability and performance of MapReduce systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experience%20with%20benchmarking%20dependability%20and%20performance%20of%20MapReduce%20systems&rft.jtitle=Performance%20evaluation&rft.au=Sangroya,%20Amit&rft.date=2016-07&rft.volume=101&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0166-5316&rft.eissn=1872-745X&rft_id=info:doi/10.1016/j.peva.2016.04.001&rft_dat=%3Cproquest_hal_p%3E1825475158%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-3e132c458e1bc0d86c250f8eae4be9b7702593ba84639e3e115fcd4284e84b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825475158&rft_id=info:pmid/&rfr_iscdi=true