Loading…

BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS

This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electronic business management 2016-09, Vol.14, p.1-11
Main Authors: Kemp, Gavin, Amaya, Pedropablo López, Da Silva, Catarina Ferreira, Vargas-Solar, Genoveva, Ghodous, Parisa, Collet, Christine
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11
container_issue
container_start_page 1
container_title International journal of electronic business management
container_volume 14
creator Kemp, Gavin
Amaya, Pedropablo López
Da Silva, Catarina Ferreira
Vargas-Solar, Genoveva
Ghodous, Parisa
Collet, Christine
description This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01374880v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021668357</sourcerecordid><originalsourceid>FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3</originalsourceid><addsrcrecordid>eNpNjk9PgzAAxRujiXP6HZp48kBSWuifYweMNWkAoXolLdJsy5QJzsRvLzoPnt7Ly--9vAuwCBnmAUYRu_znr8HNNO0RojQWbAEeVyqHqTQSJqXWWWJUWTRQFilssvpZJVkD12UNV09Kp6rIoSpMprXKs8JAU8uiqcraQFlVWiXyt3wLrrw9TP3dny6BWWcm2QS6zGdGB1uKWcAo6qxnnnLERNjj2HMnIi86T4WgFgvsqHcvs1rnBOWU8JAz53wkWNcTR5bg4Ty7tYf2OO5e7fjVDnbXbqRufzIUEhZxjj7Dmb0_s8dxeD_100e7H07j2_yuxQiHlHISM_INlZdR6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021668357</pqid></control><display><type>article</type><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</creator><creatorcontrib>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</creatorcontrib><description>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</description><identifier>ISSN: 1728-2047</identifier><identifier>EISSN: 1728-2047</identifier><language>eng</language><publisher>Hschinchu: Electronic Business Management Society, Taiwan</publisher><subject>Algorithms ; Architectural engineering ; Big Data ; Cities ; Cloud computing ; Computer Science ; Crowdsourcing ; Data analysis ; Data collection ; Data mining ; Humanities and Social Sciences ; Infrastructure ; International conferences ; Knowledge discovery ; Library and information sciences ; Queries ; Sensors ; Service oriented architecture ; Smartphones ; Towns ; Traffic</subject><ispartof>International journal of electronic business management, 2016-09, Vol.14, p.1-11</ispartof><rights>Copyright Electronic Business Management Society, Taiwan 2016</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9545-1821 ; 0000-0003-3222-081X ; 0000-0003-3222-0043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01374880$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemp, Gavin</creatorcontrib><creatorcontrib>Amaya, Pedropablo López</creatorcontrib><creatorcontrib>Da Silva, Catarina Ferreira</creatorcontrib><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Collet, Christine</creatorcontrib><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><title>International journal of electronic business management</title><description>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</description><subject>Algorithms</subject><subject>Architectural engineering</subject><subject>Big Data</subject><subject>Cities</subject><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Crowdsourcing</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Humanities and Social Sciences</subject><subject>Infrastructure</subject><subject>International conferences</subject><subject>Knowledge discovery</subject><subject>Library and information sciences</subject><subject>Queries</subject><subject>Sensors</subject><subject>Service oriented architecture</subject><subject>Smartphones</subject><subject>Towns</subject><subject>Traffic</subject><issn>1728-2047</issn><issn>1728-2047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNjk9PgzAAxRujiXP6HZp48kBSWuifYweMNWkAoXolLdJsy5QJzsRvLzoPnt7Ly--9vAuwCBnmAUYRu_znr8HNNO0RojQWbAEeVyqHqTQSJqXWWWJUWTRQFilssvpZJVkD12UNV09Kp6rIoSpMprXKs8JAU8uiqcraQFlVWiXyt3wLrrw9TP3dny6BWWcm2QS6zGdGB1uKWcAo6qxnnnLERNjj2HMnIi86T4WgFgvsqHcvs1rnBOWU8JAz53wkWNcTR5bg4Ty7tYf2OO5e7fjVDnbXbqRufzIUEhZxjj7Dmb0_s8dxeD_100e7H07j2_yuxQiHlHISM_INlZdR6Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Kemp, Gavin</creator><creator>Amaya, Pedropablo López</creator><creator>Da Silva, Catarina Ferreira</creator><creator>Vargas-Solar, Genoveva</creator><creator>Ghodous, Parisa</creator><creator>Collet, Christine</creator><general>Electronic Business Management Society, Taiwan</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RO</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><orcidid>https://orcid.org/0000-0003-3222-081X</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid></search><sort><creationdate>20160901</creationdate><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><author>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Architectural engineering</topic><topic>Big Data</topic><topic>Cities</topic><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Crowdsourcing</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Humanities and Social Sciences</topic><topic>Infrastructure</topic><topic>International conferences</topic><topic>Knowledge discovery</topic><topic>Library and information sciences</topic><topic>Queries</topic><topic>Sensors</topic><topic>Service oriented architecture</topic><topic>Smartphones</topic><topic>Towns</topic><topic>Traffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemp, Gavin</creatorcontrib><creatorcontrib>Amaya, Pedropablo López</creatorcontrib><creatorcontrib>Da Silva, Catarina Ferreira</creatorcontrib><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Collet, Christine</creatorcontrib><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Asian &amp; European Business Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Asian &amp; European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of electronic business management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemp, Gavin</au><au>Amaya, Pedropablo López</au><au>Da Silva, Catarina Ferreira</au><au>Vargas-Solar, Genoveva</au><au>Ghodous, Parisa</au><au>Collet, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</atitle><jtitle>International journal of electronic business management</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>14</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1728-2047</issn><eissn>1728-2047</eissn><abstract>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</abstract><cop>Hschinchu</cop><pub>Electronic Business Management Society, Taiwan</pub><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><orcidid>https://orcid.org/0000-0003-3222-081X</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1728-2047
ispartof International journal of electronic business management, 2016-09, Vol.14, p.1-11
issn 1728-2047
1728-2047
language eng
recordid cdi_hal_primary_oai_HAL_hal_01374880v1
source BSC - Ebsco (Business Source Ultimate)
subjects Algorithms
Architectural engineering
Big Data
Cities
Cloud computing
Computer Science
Crowdsourcing
Data analysis
Data collection
Data mining
Humanities and Social Sciences
Infrastructure
International conferences
Knowledge discovery
Library and information sciences
Queries
Sensors
Service oriented architecture
Smartphones
Towns
Traffic
title BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIG%20DATA%20COLLECTIONS%20AND%20SERVICES%20FOR%20BUILDING%20INTELLIGENT%20TRANSPORT%20APPLICATIONS&rft.jtitle=International%20journal%20of%20electronic%20business%20management&rft.au=Kemp,%20Gavin&rft.date=2016-09-01&rft.volume=14&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1728-2047&rft.eissn=1728-2047&rft_id=info:doi/&rft_dat=%3Cproquest_hal_p%3E2021668357%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021668357&rft_id=info:pmid/&rfr_iscdi=true