Loading…
BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS
This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing...
Saved in:
Published in: | International journal of electronic business management 2016-09, Vol.14, p.1-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | International journal of electronic business management |
container_volume | 14 |
creator | Kemp, Gavin Amaya, Pedropablo López Da Silva, Catarina Ferreira Vargas-Solar, Genoveva Ghodous, Parisa Collet, Christine |
description | This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics. |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01374880v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021668357</sourcerecordid><originalsourceid>FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3</originalsourceid><addsrcrecordid>eNpNjk9PgzAAxRujiXP6HZp48kBSWuifYweMNWkAoXolLdJsy5QJzsRvLzoPnt7Ly--9vAuwCBnmAUYRu_znr8HNNO0RojQWbAEeVyqHqTQSJqXWWWJUWTRQFilssvpZJVkD12UNV09Kp6rIoSpMprXKs8JAU8uiqcraQFlVWiXyt3wLrrw9TP3dny6BWWcm2QS6zGdGB1uKWcAo6qxnnnLERNjj2HMnIi86T4WgFgvsqHcvs1rnBOWU8JAz53wkWNcTR5bg4Ty7tYf2OO5e7fjVDnbXbqRufzIUEhZxjj7Dmb0_s8dxeD_100e7H07j2_yuxQiHlHISM_INlZdR6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021668357</pqid></control><display><type>article</type><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</creator><creatorcontrib>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</creatorcontrib><description>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</description><identifier>ISSN: 1728-2047</identifier><identifier>EISSN: 1728-2047</identifier><language>eng</language><publisher>Hschinchu: Electronic Business Management Society, Taiwan</publisher><subject>Algorithms ; Architectural engineering ; Big Data ; Cities ; Cloud computing ; Computer Science ; Crowdsourcing ; Data analysis ; Data collection ; Data mining ; Humanities and Social Sciences ; Infrastructure ; International conferences ; Knowledge discovery ; Library and information sciences ; Queries ; Sensors ; Service oriented architecture ; Smartphones ; Towns ; Traffic</subject><ispartof>International journal of electronic business management, 2016-09, Vol.14, p.1-11</ispartof><rights>Copyright Electronic Business Management Society, Taiwan 2016</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9545-1821 ; 0000-0003-3222-081X ; 0000-0003-3222-0043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01374880$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemp, Gavin</creatorcontrib><creatorcontrib>Amaya, Pedropablo López</creatorcontrib><creatorcontrib>Da Silva, Catarina Ferreira</creatorcontrib><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Collet, Christine</creatorcontrib><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><title>International journal of electronic business management</title><description>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</description><subject>Algorithms</subject><subject>Architectural engineering</subject><subject>Big Data</subject><subject>Cities</subject><subject>Cloud computing</subject><subject>Computer Science</subject><subject>Crowdsourcing</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Humanities and Social Sciences</subject><subject>Infrastructure</subject><subject>International conferences</subject><subject>Knowledge discovery</subject><subject>Library and information sciences</subject><subject>Queries</subject><subject>Sensors</subject><subject>Service oriented architecture</subject><subject>Smartphones</subject><subject>Towns</subject><subject>Traffic</subject><issn>1728-2047</issn><issn>1728-2047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpNjk9PgzAAxRujiXP6HZp48kBSWuifYweMNWkAoXolLdJsy5QJzsRvLzoPnt7Ly--9vAuwCBnmAUYRu_znr8HNNO0RojQWbAEeVyqHqTQSJqXWWWJUWTRQFilssvpZJVkD12UNV09Kp6rIoSpMprXKs8JAU8uiqcraQFlVWiXyt3wLrrw9TP3dny6BWWcm2QS6zGdGB1uKWcAo6qxnnnLERNjj2HMnIi86T4WgFgvsqHcvs1rnBOWU8JAz53wkWNcTR5bg4Ty7tYf2OO5e7fjVDnbXbqRufzIUEhZxjj7Dmb0_s8dxeD_100e7H07j2_yuxQiHlHISM_INlZdR6Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Kemp, Gavin</creator><creator>Amaya, Pedropablo López</creator><creator>Da Silva, Catarina Ferreira</creator><creator>Vargas-Solar, Genoveva</creator><creator>Ghodous, Parisa</creator><creator>Collet, Christine</creator><general>Electronic Business Management Society, Taiwan</general><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RO</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AXJJW</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FREBS</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><orcidid>https://orcid.org/0000-0003-3222-081X</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid></search><sort><creationdate>20160901</creationdate><title>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</title><author>Kemp, Gavin ; Amaya, Pedropablo López ; Da Silva, Catarina Ferreira ; Vargas-Solar, Genoveva ; Ghodous, Parisa ; Collet, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Architectural engineering</topic><topic>Big Data</topic><topic>Cities</topic><topic>Cloud computing</topic><topic>Computer Science</topic><topic>Crowdsourcing</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Humanities and Social Sciences</topic><topic>Infrastructure</topic><topic>International conferences</topic><topic>Knowledge discovery</topic><topic>Library and information sciences</topic><topic>Queries</topic><topic>Sensors</topic><topic>Service oriented architecture</topic><topic>Smartphones</topic><topic>Towns</topic><topic>Traffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemp, Gavin</creatorcontrib><creatorcontrib>Amaya, Pedropablo López</creatorcontrib><creatorcontrib>Da Silva, Catarina Ferreira</creatorcontrib><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Collet, Christine</creatorcontrib><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Asian Business Database</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Asian Business Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Asian & European Business Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Asian & European Business Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of electronic business management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemp, Gavin</au><au>Amaya, Pedropablo López</au><au>Da Silva, Catarina Ferreira</au><au>Vargas-Solar, Genoveva</au><au>Ghodous, Parisa</au><au>Collet, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS</atitle><jtitle>International journal of electronic business management</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>14</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1728-2047</issn><eissn>1728-2047</eissn><abstract>This paper presents an approach for building data collections and cloud services required for building intelligent transport applications. Services implement Big Data analytics functions that can bring new insights and useful correlations of large data collections and provide knowledge for managing transport issues. Applying data analytics to transport systems brings better understanding to the transport networks revealing unexpected choking points in cities. This facility is still largely inaccessible to small companies and citizens due to their limited access to computational resources. A cloud service oriented architecture opens new perspectives for democratizing the use of efficient and personalized big data management and analytics.</abstract><cop>Hschinchu</cop><pub>Electronic Business Management Society, Taiwan</pub><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><orcidid>https://orcid.org/0000-0003-3222-081X</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1728-2047 |
ispartof | International journal of electronic business management, 2016-09, Vol.14, p.1-11 |
issn | 1728-2047 1728-2047 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01374880v1 |
source | BSC - Ebsco (Business Source Ultimate) |
subjects | Algorithms Architectural engineering Big Data Cities Cloud computing Computer Science Crowdsourcing Data analysis Data collection Data mining Humanities and Social Sciences Infrastructure International conferences Knowledge discovery Library and information sciences Queries Sensors Service oriented architecture Smartphones Towns Traffic |
title | BIG DATA COLLECTIONS AND SERVICES FOR BUILDING INTELLIGENT TRANSPORT APPLICATIONS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIG%20DATA%20COLLECTIONS%20AND%20SERVICES%20FOR%20BUILDING%20INTELLIGENT%20TRANSPORT%20APPLICATIONS&rft.jtitle=International%20journal%20of%20electronic%20business%20management&rft.au=Kemp,%20Gavin&rft.date=2016-09-01&rft.volume=14&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1728-2047&rft.eissn=1728-2047&rft_id=info:doi/&rft_dat=%3Cproquest_hal_p%3E2021668357%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h627-760caf7f680791e25f8b94f9cf6996a292b6fbd292abb968638187bbf497ce3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021668357&rft_id=info:pmid/&rfr_iscdi=true |