Loading…
Designing techniques for systemic impact: lessons from C-K theory and matroid structures
As underlined in Arthur’s book “the nature of technology”, we are very knowledgeable on the design of objects, services or technical systems, but we don’t know much on the dynamics of technologies. Still contemporary innovation often consists in designing techniques with systemic impact. They are pe...
Saved in:
Published in: | Research in engineering design 2017-07, Vol.28 (3), p.275-298 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As underlined in Arthur’s book “the nature of technology”, we are very knowledgeable on the design of objects, services or technical systems, but we don’t know much on the dynamics of technologies. Still contemporary innovation often consists in designing techniques with systemic impact. They are
pervasive
—both invasive and perturbing—and they recompose the family of techniques. Can we model the impact and the design of such techniques? More specifically: how can one design generic technology, i.e. a single technology that provokes a complete reordering of families of techniques? Advances in design theories open new possibilities to answer these questions. In this paper, we use C-K design theory and a matroid-based model of the set of techniques to propose a new model (C-K/Ma) of the dynamics of techniques, accounting for the design of generic technologies. We show that: (1) C-K/Ma accounts for basic phenomena in the design of pervasive (and non-pervasive) techniques, in particular for generic techniques. (2) C-K/Ma, when applied iteratively, helps to propose new laws for the dynamics of techniques and helps to build strategic alternatives in the design of techniques. Moreover, C-K/Ma contributes to design theory since it provides some basic quantifiers and operations that could lead to a computational model of the process of designing techniques with systemic impact. |
---|---|
ISSN: | 0934-9839 1435-6066 |
DOI: | 10.1007/s00163-016-0241-4 |