Loading…

Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent

Summary Angiogenesis plays a pivotal role in tumorigenesis and also contributes to the pathogenesis of hematologic malignancies. A number of plant compounds have shown efficacy in preclinical and clinical studies and some of them possess an anti-angiogenic activity. Our present findings report anti-...

Full description

Saved in:
Bibliographic Details
Published in:Investigational new drugs 2015-02, Vol.33 (1), p.75-85
Main Authors: Ouchani, Farid, Jeanne, Albin, Thevenard, Jessica, Helesbeux, Jean-Jacques, Wahart, Amandine, Letinois, Isabelle, Duval, Olivier, Martiny, Laurent, Charpentier, Emmanuelle, Devy, Jérôme
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Angiogenesis plays a pivotal role in tumorigenesis and also contributes to the pathogenesis of hematologic malignancies. A number of plant compounds have shown efficacy in preclinical and clinical studies and some of them possess an anti-angiogenic activity. Our present findings report anti-angiogenic activities of ethoxyfagaronine (etxfag), a synthetic derivative of fagaronine. Once determined the non-cytotoxic concentration of etxfag, we showed that the drug inhibits VEGF-induced angiogenesis in a Matrigel™ plug assay and suppresses ex vivo sprouting from VEGF-treated aortic rings. Each feature leading to neovascularization was then investigated and results demonstrate that etxfag prevents VEGF-induced migration and tube formation in human umbilical vein endothelial cells (HUVEC). Moreover, etxfag also suppresses VEGF-induced VEGFR-2 phosphorylation and inhibits FAK phosphorylation at Y-861 as well as focal adhesion complex turnover. Beside these effects, etxfag modifies MT1-MMP localization at the endothelial cell membrane. Finally, immunoprecipitation assay revealed that etxfag decreases VEGF binding to VEGFR-2. As we previously reported that etxfag is able to prevent leukemic cell invasiveness and adhesion to fibronectin, all together our data collectively support the anti-angiogenic activities of etxfag which could represent an additional approach to current anti-cancer therapies.
ISSN:0167-6997
1573-0646
DOI:10.1007/s10637-014-0184-4