Loading…

Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module

This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent material systems and structures 2017-06, Vol.28 (10), p.1346-1357
Main Authors: Kulkarni, Vainatey, Giraud, Frédéric, Giraud-Audine, Christophe, Amberg, Michel, Ben Mrad, Ridha, Prasad, S Eswar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3
cites cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3
container_end_page 1357
container_issue 10
container_start_page 1346
container_title Journal of intelligent material systems and structures
container_volume 28
creator Kulkarni, Vainatey
Giraud, Frédéric
Giraud-Audine, Christophe
Amberg, Michel
Ben Mrad, Ridha
Prasad, S Eswar
description This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.
doi_str_mv 10.1177/1045389X16672563
format article
fullrecord <record><control><sourceid>sage_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01396823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X16672563</sage_id><sourcerecordid>10.1177_1045389X16672563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3j7l6iCZNk7bHMdQNBl4UvJXX5HXraJORdIP992ZMPQie3q_P98H3S8i94I9CFMWT4LmSZfUptC4ypeUFmQglOSuFLC9Tn87sdL8mNzFuORel4nJCdks34jrA2HlHfUuBjj7ENLAGIloaNwiBDd4iRYdhfaQbCAeMIwYKzv4sB3CwxgHdSLFHMwbvOhNp6xNFI7qYmvRk3-MtuWqhj3j3Xafk4-X5fb5gq7fX5Xy2YkYKNbK8zHVTZlqh4jmAhba1jTK64VpLBRoK5JUpMm6tQa1Fm0mBlktjK9vyopFT8nD-u4G-3oVugHCsPXT1YraqTzsuZKXLTB5EYvmZNcHHGLD9FQhen9Kt_6abJOwsicl3vfX74JKb__kvIm98AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><source>Sage Journals Online</source><creator>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</creator><creatorcontrib>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</creatorcontrib><description>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X16672563</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Electric power ; Engineering Sciences</subject><ispartof>Journal of intelligent material systems and structures, 2017-06, Vol.28 (10), p.1346-1357</ispartof><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</citedby><cites>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</cites><orcidid>0000-0002-5688-711X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01396823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulkarni, Vainatey</creatorcontrib><creatorcontrib>Giraud, Frédéric</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Amberg, Michel</creatorcontrib><creatorcontrib>Ben Mrad, Ridha</creatorcontrib><creatorcontrib>Prasad, S Eswar</creatorcontrib><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><title>Journal of intelligent material systems and structures</title><description>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</description><subject>Electric power</subject><subject>Engineering Sciences</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3j7l6iCZNk7bHMdQNBl4UvJXX5HXraJORdIP992ZMPQie3q_P98H3S8i94I9CFMWT4LmSZfUptC4ypeUFmQglOSuFLC9Tn87sdL8mNzFuORel4nJCdks34jrA2HlHfUuBjj7ENLAGIloaNwiBDd4iRYdhfaQbCAeMIwYKzv4sB3CwxgHdSLFHMwbvOhNp6xNFI7qYmvRk3-MtuWqhj3j3Xafk4-X5fb5gq7fX5Xy2YkYKNbK8zHVTZlqh4jmAhba1jTK64VpLBRoK5JUpMm6tQa1Fm0mBlktjK9vyopFT8nD-u4G-3oVugHCsPXT1YraqTzsuZKXLTB5EYvmZNcHHGLD9FQhen9Kt_6abJOwsicl3vfX74JKb__kvIm98AQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Kulkarni, Vainatey</creator><creator>Giraud, Frédéric</creator><creator>Giraud-Audine, Christophe</creator><creator>Amberg, Michel</creator><creator>Ben Mrad, Ridha</creator><creator>Prasad, S Eswar</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5688-711X</orcidid></search><sort><creationdate>20170601</creationdate><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><author>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electric power</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Vainatey</creatorcontrib><creatorcontrib>Giraud, Frédéric</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Amberg, Michel</creatorcontrib><creatorcontrib>Ben Mrad, Ridha</creatorcontrib><creatorcontrib>Prasad, S Eswar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Vainatey</au><au>Giraud, Frédéric</au><au>Giraud-Audine, Christophe</au><au>Amberg, Michel</au><au>Ben Mrad, Ridha</au><au>Prasad, S Eswar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>28</volume><issue>10</issue><spage>1346</spage><epage>1357</epage><pages>1346-1357</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X16672563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5688-711X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-389X
ispartof Journal of intelligent material systems and structures, 2017-06, Vol.28 (10), p.1346-1357
issn 1045-389X
1530-8138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01396823v1
source Sage Journals Online
subjects Electric power
Engineering Sciences
title Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20a%20torsion-based%20shear-mode%20energy%20harvester%20and%20energy%20management%20electronics%20for%20a%20sensor%20module&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Kulkarni,%20Vainatey&rft.date=2017-06-01&rft.volume=28&rft.issue=10&rft.spage=1346&rft.epage=1357&rft.pages=1346-1357&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X16672563&rft_dat=%3Csage_hal_p%3E10.1177_1045389X16672563%3C/sage_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X16672563&rfr_iscdi=true