Loading…
Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module
This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 2...
Saved in:
Published in: | Journal of intelligent material systems and structures 2017-06, Vol.28 (10), p.1346-1357 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3 |
container_end_page | 1357 |
container_issue | 10 |
container_start_page | 1346 |
container_title | Journal of intelligent material systems and structures |
container_volume | 28 |
creator | Kulkarni, Vainatey Giraud, Frédéric Giraud-Audine, Christophe Amberg, Michel Ben Mrad, Ridha Prasad, S Eswar |
description | This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz. |
doi_str_mv | 10.1177/1045389X16672563 |
format | article |
fullrecord | <record><control><sourceid>sage_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01396823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X16672563</sage_id><sourcerecordid>10.1177_1045389X16672563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3j7l6iCZNk7bHMdQNBl4UvJXX5HXraJORdIP992ZMPQie3q_P98H3S8i94I9CFMWT4LmSZfUptC4ypeUFmQglOSuFLC9Tn87sdL8mNzFuORel4nJCdks34jrA2HlHfUuBjj7ENLAGIloaNwiBDd4iRYdhfaQbCAeMIwYKzv4sB3CwxgHdSLFHMwbvOhNp6xNFI7qYmvRk3-MtuWqhj3j3Xafk4-X5fb5gq7fX5Xy2YkYKNbK8zHVTZlqh4jmAhba1jTK64VpLBRoK5JUpMm6tQa1Fm0mBlktjK9vyopFT8nD-u4G-3oVugHCsPXT1YraqTzsuZKXLTB5EYvmZNcHHGLD9FQhen9Kt_6abJOwsicl3vfX74JKb__kvIm98AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><source>Sage Journals Online</source><creator>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</creator><creatorcontrib>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</creatorcontrib><description>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X16672563</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Electric power ; Engineering Sciences</subject><ispartof>Journal of intelligent material systems and structures, 2017-06, Vol.28 (10), p.1346-1357</ispartof><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</citedby><cites>FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</cites><orcidid>0000-0002-5688-711X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01396823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulkarni, Vainatey</creatorcontrib><creatorcontrib>Giraud, Frédéric</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Amberg, Michel</creatorcontrib><creatorcontrib>Ben Mrad, Ridha</creatorcontrib><creatorcontrib>Prasad, S Eswar</creatorcontrib><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><title>Journal of intelligent material systems and structures</title><description>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</description><subject>Electric power</subject><subject>Engineering Sciences</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3j7l6iCZNk7bHMdQNBl4UvJXX5HXraJORdIP992ZMPQie3q_P98H3S8i94I9CFMWT4LmSZfUptC4ypeUFmQglOSuFLC9Tn87sdL8mNzFuORel4nJCdks34jrA2HlHfUuBjj7ENLAGIloaNwiBDd4iRYdhfaQbCAeMIwYKzv4sB3CwxgHdSLFHMwbvOhNp6xNFI7qYmvRk3-MtuWqhj3j3Xafk4-X5fb5gq7fX5Xy2YkYKNbK8zHVTZlqh4jmAhba1jTK64VpLBRoK5JUpMm6tQa1Fm0mBlktjK9vyopFT8nD-u4G-3oVugHCsPXT1YraqTzsuZKXLTB5EYvmZNcHHGLD9FQhen9Kt_6abJOwsicl3vfX74JKb__kvIm98AQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Kulkarni, Vainatey</creator><creator>Giraud, Frédéric</creator><creator>Giraud-Audine, Christophe</creator><creator>Amberg, Michel</creator><creator>Ben Mrad, Ridha</creator><creator>Prasad, S Eswar</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5688-711X</orcidid></search><sort><creationdate>20170601</creationdate><title>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</title><author>Kulkarni, Vainatey ; Giraud, Frédéric ; Giraud-Audine, Christophe ; Amberg, Michel ; Ben Mrad, Ridha ; Prasad, S Eswar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electric power</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Vainatey</creatorcontrib><creatorcontrib>Giraud, Frédéric</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Amberg, Michel</creatorcontrib><creatorcontrib>Ben Mrad, Ridha</creatorcontrib><creatorcontrib>Prasad, S Eswar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Vainatey</au><au>Giraud, Frédéric</au><au>Giraud-Audine, Christophe</au><au>Amberg, Michel</au><au>Ben Mrad, Ridha</au><au>Prasad, S Eswar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>28</volume><issue>10</issue><spage>1346</spage><epage>1357</epage><pages>1346-1357</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>This work demonstrates the ability of a torsion-based shear-mode energy harvester to power a sensor module by integrating a temperature sensor circuit with a purpose developed piezoelectric energy harvester. A 10-cm3 energy harvester was developed for this application and was found to produce over 200 µW of maximum power through an optimal load resistance under 0.25 gpk acceleration excitation at its resonant frequency of 237 Hz. This harvester was then tested with two interface circuits: a standard interface diode bridge rectifier and a nonlinear synchronous electrical charge extraction circuit that were compared for their suitability in powering the sensor module. Through this, the synchronous electrical charge extraction nonlinear conditioning circuit was found to have superior performance when charging a capacitor and with DC loads at low voltages and was capable of providing a maximum power output of 37 µW under 0.25 gpk acceleration at 237 Hz. This output power was then used to successfully power a temperature sensor module consisting of a temperature sensor, a microcontroller, and a radio-frequency identification memory chip at a sensing frequency of 0.5 Hz.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X16672563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5688-711X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 2017-06, Vol.28 (10), p.1346-1357 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01396823v1 |
source | Sage Journals Online |
subjects | Electric power Engineering Sciences |
title | Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20a%20torsion-based%20shear-mode%20energy%20harvester%20and%20energy%20management%20electronics%20for%20a%20sensor%20module&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Kulkarni,%20Vainatey&rft.date=2017-06-01&rft.volume=28&rft.issue=10&rft.spage=1346&rft.epage=1357&rft.pages=1346-1357&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X16672563&rft_dat=%3Csage_hal_p%3E10.1177_1045389X16672563%3C/sage_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4846b8265e504aadaffdb5c6b06635a6a7e09c720ddce661f231ed03cd9df07b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X16672563&rfr_iscdi=true |