Loading…

Lower semicontinuity via W^{1,q}-quasiconvexity

We isolate a general condition, that we call "localization principle", on the integrand $L:\mathbb{M}\to[0,\infty]$, assumed to be continuous, under which $W^{1,q}$-quasiconvexity with $q\in[1,\infty]$ is a sufficient condition for $I(u)=\int_\Omega L(\nabla u(x))dx$ to be sequentially wea...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin des sciences mathématiques 2013-07, Vol.137 (5), p.602-616
Main Author: Mandallena, Jean-Philippe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 616
container_issue 5
container_start_page 602
container_title Bulletin des sciences mathématiques
container_volume 137
creator Mandallena, Jean-Philippe
description We isolate a general condition, that we call "localization principle", on the integrand $L:\mathbb{M}\to[0,\infty]$, assumed to be continuous, under which $W^{1,q}$-quasiconvexity with $q\in[1,\infty]$ is a sufficient condition for $I(u)=\int_\Omega L(\nabla u(x))dx$ to be sequentially weakly lower semicontinuous on $W^{1,p}(\Omega;\mathbb{R}^m)$ with $p\in]1,\infty[$. Some applications are given.
doi_str_mv 10.1016/j.bulsci.2012.12.004
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01399651v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01399651v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h104t-ae7a075b852e9f65084898b8c1f08922f85021599a180b736ebc9843b87f41193</originalsourceid><addsrcrecordid>eNotjE1Lw0AURWehYK3-AxfZCiZ9bz4y85alqBUCbhR3hpkwoVPSxmaSaBH_uykKFw7cc7mM3SBkCJgvtpkbmliFjAPybAqAPGMzANCplKQv2GWMW5imJNSMLYr203dJ9LtQtfs-7IfQH5Mx2OTt_RvvDj_pYbDx5Eb_Nakrdl7bJvrrf87Z68P9y2qdFs-PT6tlkW4QZJ9ary1o5YzinupcgZGGjDMV1mCI89oo4KiILBpwWuTeVWSkcEbXEpHEnN3-_W5sU350YWe7Y9naUK6XRXnqAAVRrnBE8QsEykZf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lower semicontinuity via W^{1,q}-quasiconvexity</title><source>ScienceDirect Freedom Collection</source><creator>Mandallena, Jean-Philippe</creator><creatorcontrib>Mandallena, Jean-Philippe</creatorcontrib><description>We isolate a general condition, that we call "localization principle", on the integrand $L:\mathbb{M}\to[0,\infty]$, assumed to be continuous, under which $W^{1,q}$-quasiconvexity with $q\in[1,\infty]$ is a sufficient condition for $I(u)=\int_\Omega L(\nabla u(x))dx$ to be sequentially weakly lower semicontinuous on $W^{1,p}(\Omega;\mathbb{R}^m)$ with $p\in]1,\infty[$. Some applications are given.</description><identifier>ISSN: 0007-4497</identifier><identifier>DOI: 10.1016/j.bulsci.2012.12.004</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Mathematics</subject><ispartof>Bulletin des sciences mathématiques, 2013-07, Vol.137 (5), p.602-616</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01399651$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandallena, Jean-Philippe</creatorcontrib><title>Lower semicontinuity via W^{1,q}-quasiconvexity</title><title>Bulletin des sciences mathématiques</title><description>We isolate a general condition, that we call "localization principle", on the integrand $L:\mathbb{M}\to[0,\infty]$, assumed to be continuous, under which $W^{1,q}$-quasiconvexity with $q\in[1,\infty]$ is a sufficient condition for $I(u)=\int_\Omega L(\nabla u(x))dx$ to be sequentially weakly lower semicontinuous on $W^{1,p}(\Omega;\mathbb{R}^m)$ with $p\in]1,\infty[$. Some applications are given.</description><subject>Mathematics</subject><issn>0007-4497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotjE1Lw0AURWehYK3-AxfZCiZ9bz4y85alqBUCbhR3hpkwoVPSxmaSaBH_uykKFw7cc7mM3SBkCJgvtpkbmliFjAPybAqAPGMzANCplKQv2GWMW5imJNSMLYr203dJ9LtQtfs-7IfQH5Mx2OTt_RvvDj_pYbDx5Eb_Nakrdl7bJvrrf87Z68P9y2qdFs-PT6tlkW4QZJ9ary1o5YzinupcgZGGjDMV1mCI89oo4KiILBpwWuTeVWSkcEbXEpHEnN3-_W5sU350YWe7Y9naUK6XRXnqAAVRrnBE8QsEykZf</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Mandallena, Jean-Philippe</creator><general>Elsevier</general><scope>1XC</scope></search><sort><creationdate>201307</creationdate><title>Lower semicontinuity via W^{1,q}-quasiconvexity</title><author>Mandallena, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h104t-ae7a075b852e9f65084898b8c1f08922f85021599a180b736ebc9843b87f41193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandallena, Jean-Philippe</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bulletin des sciences mathématiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandallena, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower semicontinuity via W^{1,q}-quasiconvexity</atitle><jtitle>Bulletin des sciences mathématiques</jtitle><date>2013-07</date><risdate>2013</risdate><volume>137</volume><issue>5</issue><spage>602</spage><epage>616</epage><pages>602-616</pages><issn>0007-4497</issn><abstract>We isolate a general condition, that we call "localization principle", on the integrand $L:\mathbb{M}\to[0,\infty]$, assumed to be continuous, under which $W^{1,q}$-quasiconvexity with $q\in[1,\infty]$ is a sufficient condition for $I(u)=\int_\Omega L(\nabla u(x))dx$ to be sequentially weakly lower semicontinuous on $W^{1,p}(\Omega;\mathbb{R}^m)$ with $p\in]1,\infty[$. Some applications are given.</abstract><pub>Elsevier</pub><doi>10.1016/j.bulsci.2012.12.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-4497
ispartof Bulletin des sciences mathématiques, 2013-07, Vol.137 (5), p.602-616
issn 0007-4497
language eng
recordid cdi_hal_primary_oai_HAL_hal_01399651v1
source ScienceDirect Freedom Collection
subjects Mathematics
title Lower semicontinuity via W^{1,q}-quasiconvexity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20semicontinuity%20via%20W%5E%7B1,q%7D-quasiconvexity&rft.jtitle=Bulletin%20des%20sciences%20math%C3%A9matiques&rft.au=Mandallena,%20Jean-Philippe&rft.date=2013-07&rft.volume=137&rft.issue=5&rft.spage=602&rft.epage=616&rft.pages=602-616&rft.issn=0007-4497&rft_id=info:doi/10.1016/j.bulsci.2012.12.004&rft_dat=%3Chal%3Eoai_HAL_hal_01399651v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h104t-ae7a075b852e9f65084898b8c1f08922f85021599a180b736ebc9843b87f41193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true