Loading…

Local spectral gap in simple Lie groups and applications

We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action Γ ↷ G , whenever Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G . This ext...

Full description

Saved in:
Bibliographic Details
Published in:Inventiones mathematicae 2017-06, Vol.208 (3), p.715-802
Main Authors: Boutonnet, Rémi, Ioana, Adrian, Golsefidy, Alireza Salehi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3
cites cdi_FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3
container_end_page 802
container_issue 3
container_start_page 715
container_title Inventiones mathematicae
container_volume 208
creator Boutonnet, Rémi
Ioana, Adrian
Golsefidy, Alireza Salehi
description We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action Γ ↷ G , whenever Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G . This extends to the non-compact setting works of Bourgain and Gamburd (Invent Math 171:83–121, 2008 ; J Eur Math Soc (JEMS) 14:1455–1511, 2012 ), and Benoist and de Saxcé (Invent Math 205:337–361, 2016 ). We present several applications to the Banach–Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on G . In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique Γ -invariant finitely additive measure defined on all bounded measurable subsets of G .
doi_str_mv 10.1007/s00222-016-0699-8
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01449823v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415572387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8FTx6iM0naJMdlUVcoeNFzyLbp2qXbxqQV_PdmqejJ0wwz33vMPEKuEe4QQN5HAMYYBSwoFFpTdUIWKDijyLQ8JYu0Bqo1wjm5iHEPkJaSLYgqh8p2WfSuGkNqdtZnbZ_F9uA7l5Wty3ZhmHzMbF9n1vuurezYDn28JGeN7aK7-qlL8vb48Lre0PLl6Xm9KmnFNR8pq6SEqi5gu21sgVbWdZ2jzkHxrchdI5ErLRpZa6cVFAKkRYlaIFiRzrd8SW5n33fbGR_agw1fZrCt2axKc5ylT4RWjH9iYm9m1ofhY3JxNPthCn06zzCBeS4ZVzJROFNVGGIMrvm1RTDHMM0cZnIuzDFMo5KGzZqY2H7nwp_z_6Jv7qNz6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415572387</pqid></control><display><type>article</type><title>Local spectral gap in simple Lie groups and applications</title><source>Springer Nature</source><creator>Boutonnet, Rémi ; Ioana, Adrian ; Golsefidy, Alireza Salehi</creator><creatorcontrib>Boutonnet, Rémi ; Ioana, Adrian ; Golsefidy, Alireza Salehi</creatorcontrib><description>We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action Γ ↷ G , whenever Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G . This extends to the non-compact setting works of Bourgain and Gamburd (Invent Math 171:83–121, 2008 ; J Eur Math Soc (JEMS) 14:1455–1511, 2012 ), and Benoist and de Saxcé (Invent Math 205:337–361, 2016 ). We present several applications to the Banach–Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on G . In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique Γ -invariant finitely additive measure defined on all bounded measurable subsets of G .</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-016-0699-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Dynamical Systems ; Expanders ; Group Theory ; Lie groups ; Mathematics ; Mathematics and Statistics ; Random walk ; Set theory ; Spectra ; Subgroups</subject><ispartof>Inventiones mathematicae, 2017-06, Vol.208 (3), p.715-802</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3</citedby><cites>FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01449823$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boutonnet, Rémi</creatorcontrib><creatorcontrib>Ioana, Adrian</creatorcontrib><creatorcontrib>Golsefidy, Alireza Salehi</creatorcontrib><title>Local spectral gap in simple Lie groups and applications</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action Γ ↷ G , whenever Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G . This extends to the non-compact setting works of Bourgain and Gamburd (Invent Math 171:83–121, 2008 ; J Eur Math Soc (JEMS) 14:1455–1511, 2012 ), and Benoist and de Saxcé (Invent Math 205:337–361, 2016 ). We present several applications to the Banach–Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on G . In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique Γ -invariant finitely additive measure defined on all bounded measurable subsets of G .</description><subject>Dynamical Systems</subject><subject>Expanders</subject><subject>Group Theory</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random walk</subject><subject>Set theory</subject><subject>Spectra</subject><subject>Subgroups</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8FTx6iM0naJMdlUVcoeNFzyLbp2qXbxqQV_PdmqejJ0wwz33vMPEKuEe4QQN5HAMYYBSwoFFpTdUIWKDijyLQ8JYu0Bqo1wjm5iHEPkJaSLYgqh8p2WfSuGkNqdtZnbZ_F9uA7l5Wty3ZhmHzMbF9n1vuurezYDn28JGeN7aK7-qlL8vb48Lre0PLl6Xm9KmnFNR8pq6SEqi5gu21sgVbWdZ2jzkHxrchdI5ErLRpZa6cVFAKkRYlaIFiRzrd8SW5n33fbGR_agw1fZrCt2axKc5ylT4RWjH9iYm9m1ofhY3JxNPthCn06zzCBeS4ZVzJROFNVGGIMrvm1RTDHMM0cZnIuzDFMo5KGzZqY2H7nwp_z_6Jv7qNz6A</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Boutonnet, Rémi</creator><creator>Ioana, Adrian</creator><creator>Golsefidy, Alireza Salehi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20170601</creationdate><title>Local spectral gap in simple Lie groups and applications</title><author>Boutonnet, Rémi ; Ioana, Adrian ; Golsefidy, Alireza Salehi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dynamical Systems</topic><topic>Expanders</topic><topic>Group Theory</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random walk</topic><topic>Set theory</topic><topic>Spectra</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutonnet, Rémi</creatorcontrib><creatorcontrib>Ioana, Adrian</creatorcontrib><creatorcontrib>Golsefidy, Alireza Salehi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutonnet, Rémi</au><au>Ioana, Adrian</au><au>Golsefidy, Alireza Salehi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local spectral gap in simple Lie groups and applications</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>208</volume><issue>3</issue><spage>715</spage><epage>802</epage><pages>715-802</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We introduce a novel notion of local spectral gap for general, possibly infinite, measure preserving actions. We establish local spectral gap for the left translation action Γ ↷ G , whenever Γ is a dense subgroup generated by algebraic elements of an arbitrary connected simple Lie group G . This extends to the non-compact setting works of Bourgain and Gamburd (Invent Math 171:83–121, 2008 ; J Eur Math Soc (JEMS) 14:1455–1511, 2012 ), and Benoist and de Saxcé (Invent Math 205:337–361, 2016 ). We present several applications to the Banach–Ruziewicz problem, orbit equivalence rigidity, continuous and monotone expanders, and bounded random walks on G . In particular, we prove that, up to a multiplicative constant, the Haar measure is the unique Γ -invariant finitely additive measure defined on all bounded measurable subsets of G .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-016-0699-8</doi><tpages>88</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2017-06, Vol.208 (3), p.715-802
issn 0020-9910
1432-1297
language eng
recordid cdi_hal_primary_oai_HAL_hal_01449823v1
source Springer Nature
subjects Dynamical Systems
Expanders
Group Theory
Lie groups
Mathematics
Mathematics and Statistics
Random walk
Set theory
Spectra
Subgroups
title Local spectral gap in simple Lie groups and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20spectral%20gap%20in%20simple%20Lie%20groups%20and%20applications&rft.jtitle=Inventiones%20mathematicae&rft.au=Boutonnet,%20R%C3%A9mi&rft.date=2017-06-01&rft.volume=208&rft.issue=3&rft.spage=715&rft.epage=802&rft.pages=715-802&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-016-0699-8&rft_dat=%3Cproquest_hal_p%3E2415572387%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-2c770cd60bbfa61a7ddd5195083b45ef713894f7d9e9806407a1719410a4432a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415572387&rft_id=info:pmid/&rfr_iscdi=true