Loading…

Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG

Human subjects are able to prepare cognitively to resist an involuntary movement evoked by a suprathreshold transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) by anticipatory selective modulation of corticospinal excitability. Uncovering how the sensorimotor cortical...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience 2009-09, Vol.30 (5), p.913-923
Main Authors: Bonnard, M., Spieser, L., Meziane, H. B., De Graaf, J. B., Pailhous, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human subjects are able to prepare cognitively to resist an involuntary movement evoked by a suprathreshold transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) by anticipatory selective modulation of corticospinal excitability. Uncovering how the sensorimotor cortical network is involved in this process could reveal directly how a prior intention can tune the intrinsic dynamics of M1 before any peripheral intervention. Here, we used combined TMS‐EEG to study the cortical integrative processes that are engaged both in the preparation to react to TMS (Resist vs. Assist) and in the subsequent response to it. During the preparatory period, the contingent negative variation (CNV) amplitude was found to be smaller over central electrodes (FC1, C1, Cz) when preparing to resist compared with preparing to assist the evoked movement whereas α‐oscillation power was similar in the two conditions. Following TMS, the amplitude of the TMS evoked‐N100 component was higher in the Resist than in the Assist condition for some central electrodes (FCz, C1, Cz, CP1, CP3). Moreover, for six out of eight subjects, a single‐trial‐based analysis revealed a negative correlation between CNV amplitude and N100 amplitude. In conclusion, prior intention can tune the excitability of M1. When subjects prepare to resist a TMS‐evoked movement, the anticipatory processes cause a decreased cortical excitability by locally increasing the inhibitory processes.
ISSN:0953-816X
1460-9568
DOI:10.1111/j.1460-9568.2009.06864.x