Loading…
AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS
We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known col...
Saved in:
Published in: | The Journal of symbolic logic 2018-09, Vol.83 (3), p.1147-1189 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3 |
container_end_page | 1189 |
container_issue | 3 |
container_start_page | 1147 |
container_title | The Journal of symbolic logic |
container_volume | 83 |
creator | CARTON, OLIVIER COLCOMBET, THOMAS PUPPIS, GABRIELE |
description | We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues. |
doi_str_mv | 10.1017/jsl.2018.7 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01470325v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26600366</jstor_id><sourcerecordid>26600366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3</originalsourceid><addsrcrecordid>eNo90E1rg0AQBuCltNA07aX3gtBTC6azH-rucWOMEawGYw49LetqaCStrSaF_vsqllxmYHh4GV6E7jHMMGDvpe4OMwKYz7wLNMGCUdvh3L1EEwBCbMYxuUY3XVcDgCMYn6BQJpaMw2Ceyci35HqdpdJfWXlqvW5SexEso0TOozjK36w0sfx0m-RyHgdWHCWBzKw0WwRZlISbW3S104euuvvfU7RdBrm_suM0jHwZ24Y6-Gh7piKgK0oclxFtDCuJK9gOG4Y1EYRzgUtcCG3KojBYgBbUAQ6aFF7Zj4pO0dOY-64P6qvdf-j2VzV6r1YyVsMNMPOgz_8hvX0c7VfbfJ-q7qjq5tR-9u8p4nGPgsOI16vnUZm26bq22p1jMaihVNWXqoZS1YAfRlx3x6Y9S-K6ANR16R9fwGsK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787305427</pqid></control><display><type>article</type><title>AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Cambridge University Press</source><creator>CARTON, OLIVIER ; COLCOMBET, THOMAS ; PUPPIS, GABRIELE</creator><creatorcontrib>CARTON, OLIVIER ; COLCOMBET, THOMAS ; PUPPIS, GABRIELE</creatorcontrib><description>We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2018.7</identifier><language>eng</language><publisher>Pasadena: Association for Symbolic Logic, Inc</publisher><subject>Computer Science ; Formal Languages and Automata Theory ; Logic ; Logic in Computer Science ; Mathematics ; Philosophy ; Realism</subject><ispartof>The Journal of symbolic logic, 2018-09, Vol.83 (3), p.1147-1189</ispartof><rights>2018, Association for Symbolic Logic</rights><rights>Copyright © The Association for Symbolic Logic 2018</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3</citedby><cites>FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3</cites><orcidid>0000-0002-2728-6534 ; 0000-0001-9831-3264 ; 0000-0001-6529-6963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26600366$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26600366$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01470325$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>CARTON, OLIVIER</creatorcontrib><creatorcontrib>COLCOMBET, THOMAS</creatorcontrib><creatorcontrib>PUPPIS, GABRIELE</creatorcontrib><title>AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS</title><title>The Journal of symbolic logic</title><description>We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.</description><subject>Computer Science</subject><subject>Formal Languages and Automata Theory</subject><subject>Logic</subject><subject>Logic in Computer Science</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Realism</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo90E1rg0AQBuCltNA07aX3gtBTC6azH-rucWOMEawGYw49LetqaCStrSaF_vsqllxmYHh4GV6E7jHMMGDvpe4OMwKYz7wLNMGCUdvh3L1EEwBCbMYxuUY3XVcDgCMYn6BQJpaMw2Ceyci35HqdpdJfWXlqvW5SexEso0TOozjK36w0sfx0m-RyHgdWHCWBzKw0WwRZlISbW3S104euuvvfU7RdBrm_suM0jHwZ24Y6-Gh7piKgK0oclxFtDCuJK9gOG4Y1EYRzgUtcCG3KojBYgBbUAQ6aFF7Zj4pO0dOY-64P6qvdf-j2VzV6r1YyVsMNMPOgz_8hvX0c7VfbfJ-q7qjq5tR-9u8p4nGPgsOI16vnUZm26bq22p1jMaihVNWXqoZS1YAfRlx3x6Y9S-K6ANR16R9fwGsK</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>CARTON, OLIVIER</creator><creator>COLCOMBET, THOMAS</creator><creator>PUPPIS, GABRIELE</creator><general>Association for Symbolic Logic, Inc</general><general>Cambridge University Press</general><general>Association for Symbolic Logic</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2728-6534</orcidid><orcidid>https://orcid.org/0000-0001-9831-3264</orcidid><orcidid>https://orcid.org/0000-0001-6529-6963</orcidid></search><sort><creationdate>20180901</creationdate><title>AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS</title><author>CARTON, OLIVIER ; COLCOMBET, THOMAS ; PUPPIS, GABRIELE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Formal Languages and Automata Theory</topic><topic>Logic</topic><topic>Logic in Computer Science</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Realism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CARTON, OLIVIER</creatorcontrib><creatorcontrib>COLCOMBET, THOMAS</creatorcontrib><creatorcontrib>PUPPIS, GABRIELE</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CARTON, OLIVIER</au><au>COLCOMBET, THOMAS</au><au>PUPPIS, GABRIELE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>83</volume><issue>3</issue><spage>1147</spage><epage>1189</epage><pages>1147-1189</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We develop an algebraic notion of recognizability for languages of words indexed by countable linear orderings. We prove that this notion is effectively equivalent to definability in monadic second-order (MSO) logic. We also provide three logical applications. First, we establish the first known collapse result for the quantifier alternation of MSO logic over countable linear orderings. Second, we solve an open problem posed by Gurevich and Rabinovich, concerning the MSO-definability of sets of rational numbers using the reals in the background. Third, we establish the MSO-definability of the set of yields induced by an MSO-definable set of trees, confirming a conjecture posed by Bruyère, Carton, and Sénizergues.</abstract><cop>Pasadena</cop><pub>Association for Symbolic Logic, Inc</pub><doi>10.1017/jsl.2018.7</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-2728-6534</orcidid><orcidid>https://orcid.org/0000-0001-9831-3264</orcidid><orcidid>https://orcid.org/0000-0001-6529-6963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2018-09, Vol.83 (3), p.1147-1189 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01470325v2 |
source | JSTOR Archival Journals and Primary Sources Collection; Cambridge University Press |
subjects | Computer Science Formal Languages and Automata Theory Logic Logic in Computer Science Mathematics Philosophy Realism |
title | AN ALGEBRAIC APPROACH TO MSO-DEFINABILITY ON COUNTABLE LINEAR ORDERINGS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ALGEBRAIC%20APPROACH%20TO%20MSO-DEFINABILITY%20ON%20COUNTABLE%20LINEAR%20ORDERINGS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=CARTON,%20OLIVIER&rft.date=2018-09-01&rft.volume=83&rft.issue=3&rft.spage=1147&rft.epage=1189&rft.pages=1147-1189&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2018.7&rft_dat=%3Cjstor_hal_p%3E26600366%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-7ce20ae325642acc4d2694f1c41a2928891d1b9acdbbc190a935080a2b7da2be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787305427&rft_id=info:pmid/&rft_jstor_id=26600366&rfr_iscdi=true |