Loading…
Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination
Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in a...
Saved in:
Published in: | Journal of environmental quality 2005-09, Vol.34 (5), p.1497-1507 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated. |
---|---|
ISSN: | 0047-2425 1537-2537 |
DOI: | 10.2134/jeq2004.0274 |