Loading…
A Sensitive and Automatic White Matter Fiber Tracts Model for Longitudinal Analysis of Diffusion Tensor Images in Multiple Sclerosis
Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a...
Saved in:
Published in: | PloS one 2016, Vol.11 (5) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diffusion tensor imaging (DTI) is a sensitive tool for the assessment of microstructural alterations in brain white matter (WM). We propose a new processing technique to detect, local and global longitudinal changes of diffusivity metrics, in homologous regions along WM fiber-bundles. To this end, a reliable and automatic processing pipeline was developed in three steps: 1) co-registration and diffusion metrics computation, 2) tractography, bundle extraction and processing, and 3) longitudinal fiber-bundle analysis. The last step was based on an original Gaussian mixture model providing a fine analysis of fiber-bundle cross-sections, and allowing a sensitive detection of longitudinal changes along fibers. This method was tested on simulated and clinical data. High levels of F-Measure were obtained on simulated data. Experiments on cortico-spinal tract and inferior fronto-occipital fasciculi of five patients with Multiple Sclerosis (MS) included in a weekly follow-up protocol highlighted the greater sensitivity of this fiber scale approach to detect small longitudinal alterations. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0156405.t001 |