Loading…

Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters

Next generation spacecraft will bring back heavier payloads from explored planets. Advance in the modeling of the thermo-chemical ablation of carbon-based thermal protection system materials is fundamental to improve the design capabilities of these vehicles. Computational fluid dynamic approaches a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermal sciences 2017-08, Vol.118, p.497-509
Main Authors: Turchi, Alessandro, Congedo, Pietro M., Magin, Thierry E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823
cites cdi_FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823
container_end_page 509
container_issue
container_start_page 497
container_title International journal of thermal sciences
container_volume 118
creator Turchi, Alessandro
Congedo, Pietro M.
Magin, Thierry E.
description Next generation spacecraft will bring back heavier payloads from explored planets. Advance in the modeling of the thermo-chemical ablation of carbon-based thermal protection system materials is fundamental to improve the design capabilities of these vehicles. Computational fluid dynamic approaches are extensively used to model the gas-surface interaction phenomena over ablative materials. The advantage of such kind of approaches is the accurate description of the aerothermal environment obtained through the full resolution of the mechanical, thermal, and chemical boundary layers that develop over an ablative surface when exposed to a high-enthalpy flow. This paper is devoted to the assessment of the uncertainties of such kind of thermo-chemical ablation model and to study their effect on the model final outcomes. A sphere of non-pyrolyzing carbon-based material, exposed to conditions similar to those of a typical plasma wind tunnel test, is the selected test case for the analysis. Two forward non-intrusive uncertainty quantification techniques are used to analyze the influence of the defined set of uncertain parameters on the estimate of steady-state mass blowing flux and surface temperature. Our results show that for the selected conditions, and uncertainty ranges, the surface nitridation reaction probability has the strongest impact on the model outcomes.
doi_str_mv 10.1016/j.ijthermalsci.2017.04.004
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01501225v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072915304440</els_id><sourcerecordid>oai_HAL_hal_01501225v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823</originalsourceid><addsrcrecordid>eNqNkE1u3DAMhY0iBfLT3EHorgu7lEaWxtkFSfMDDNou0rVAS1RHA9sKJCfN7HKInrAnqaYTFFlmRYJ874H8quojh4YDV583TdjMa0ojDtmGRgDXDcgGQL6rjrjWy1pypQ5KLzqoQYvusDrOeQMAuoPuqHq627mjXdMYLA4M-wHnECc2RkdDmH4yH9MvTI49TJbSjGGatwwnHLY55D_Pv79jmtntGfv6MFL6FzHSvI4uF5Fj5D3ZmUW_z2P3mLDsKeUP1XtfjqbTl3pS_bj6cndxU6--Xd9enK9qK0HNtbBOc60Q5FJb33oPQvjWKQLJeynRQ-_6RYeLVhMoR7DsFddc9XohNS7F4qT6tM9d42DuUxgxbU3EYG7OV2Y3A94CF6J95EV7ttfaFHNO5P8bOJgdb7Mxr3mbHW8D0hTexXy5N1P55jFQMkVBBZoLqTAwLoa3xPwFLrWTUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Turchi, Alessandro ; Congedo, Pietro M. ; Magin, Thierry E.</creator><creatorcontrib>Turchi, Alessandro ; Congedo, Pietro M. ; Magin, Thierry E.</creatorcontrib><description>Next generation spacecraft will bring back heavier payloads from explored planets. Advance in the modeling of the thermo-chemical ablation of carbon-based thermal protection system materials is fundamental to improve the design capabilities of these vehicles. Computational fluid dynamic approaches are extensively used to model the gas-surface interaction phenomena over ablative materials. The advantage of such kind of approaches is the accurate description of the aerothermal environment obtained through the full resolution of the mechanical, thermal, and chemical boundary layers that develop over an ablative surface when exposed to a high-enthalpy flow. This paper is devoted to the assessment of the uncertainties of such kind of thermo-chemical ablation model and to study their effect on the model final outcomes. A sphere of non-pyrolyzing carbon-based material, exposed to conditions similar to those of a typical plasma wind tunnel test, is the selected test case for the analysis. Two forward non-intrusive uncertainty quantification techniques are used to analyze the influence of the defined set of uncertain parameters on the estimate of steady-state mass blowing flux and surface temperature. Our results show that for the selected conditions, and uncertainty ranges, the surface nitridation reaction probability has the strongest impact on the model outcomes.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2017.04.004</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Ablation modeling ; Carbon ablators ; Fluid Dynamics ; Gas-surface interaction ; Physics ; Thermal protection system materials ; Uncertainty analysis</subject><ispartof>International journal of thermal sciences, 2017-08, Vol.118, p.497-509</ispartof><rights>2017 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823</citedby><cites>FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823</cites><orcidid>0000-0003-3266-3549 ; 0000-0002-4376-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01501225$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Turchi, Alessandro</creatorcontrib><creatorcontrib>Congedo, Pietro M.</creatorcontrib><creatorcontrib>Magin, Thierry E.</creatorcontrib><title>Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters</title><title>International journal of thermal sciences</title><description>Next generation spacecraft will bring back heavier payloads from explored planets. Advance in the modeling of the thermo-chemical ablation of carbon-based thermal protection system materials is fundamental to improve the design capabilities of these vehicles. Computational fluid dynamic approaches are extensively used to model the gas-surface interaction phenomena over ablative materials. The advantage of such kind of approaches is the accurate description of the aerothermal environment obtained through the full resolution of the mechanical, thermal, and chemical boundary layers that develop over an ablative surface when exposed to a high-enthalpy flow. This paper is devoted to the assessment of the uncertainties of such kind of thermo-chemical ablation model and to study their effect on the model final outcomes. A sphere of non-pyrolyzing carbon-based material, exposed to conditions similar to those of a typical plasma wind tunnel test, is the selected test case for the analysis. Two forward non-intrusive uncertainty quantification techniques are used to analyze the influence of the defined set of uncertain parameters on the estimate of steady-state mass blowing flux and surface temperature. Our results show that for the selected conditions, and uncertainty ranges, the surface nitridation reaction probability has the strongest impact on the model outcomes.</description><subject>Ablation modeling</subject><subject>Carbon ablators</subject><subject>Fluid Dynamics</subject><subject>Gas-surface interaction</subject><subject>Physics</subject><subject>Thermal protection system materials</subject><subject>Uncertainty analysis</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE1u3DAMhY0iBfLT3EHorgu7lEaWxtkFSfMDDNou0rVAS1RHA9sKJCfN7HKInrAnqaYTFFlmRYJ874H8quojh4YDV583TdjMa0ojDtmGRgDXDcgGQL6rjrjWy1pypQ5KLzqoQYvusDrOeQMAuoPuqHq627mjXdMYLA4M-wHnECc2RkdDmH4yH9MvTI49TJbSjGGatwwnHLY55D_Pv79jmtntGfv6MFL6FzHSvI4uF5Fj5D3ZmUW_z2P3mLDsKeUP1XtfjqbTl3pS_bj6cndxU6--Xd9enK9qK0HNtbBOc60Q5FJb33oPQvjWKQLJeynRQ-_6RYeLVhMoR7DsFddc9XohNS7F4qT6tM9d42DuUxgxbU3EYG7OV2Y3A94CF6J95EV7ttfaFHNO5P8bOJgdb7Mxr3mbHW8D0hTexXy5N1P55jFQMkVBBZoLqTAwLoa3xPwFLrWTUw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Turchi, Alessandro</creator><creator>Congedo, Pietro M.</creator><creator>Magin, Thierry E.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3266-3549</orcidid><orcidid>https://orcid.org/0000-0002-4376-1518</orcidid></search><sort><creationdate>20170801</creationdate><title>Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters</title><author>Turchi, Alessandro ; Congedo, Pietro M. ; Magin, Thierry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ablation modeling</topic><topic>Carbon ablators</topic><topic>Fluid Dynamics</topic><topic>Gas-surface interaction</topic><topic>Physics</topic><topic>Thermal protection system materials</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turchi, Alessandro</creatorcontrib><creatorcontrib>Congedo, Pietro M.</creatorcontrib><creatorcontrib>Magin, Thierry E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turchi, Alessandro</au><au>Congedo, Pietro M.</au><au>Magin, Thierry E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters</atitle><jtitle>International journal of thermal sciences</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>118</volume><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>Next generation spacecraft will bring back heavier payloads from explored planets. Advance in the modeling of the thermo-chemical ablation of carbon-based thermal protection system materials is fundamental to improve the design capabilities of these vehicles. Computational fluid dynamic approaches are extensively used to model the gas-surface interaction phenomena over ablative materials. The advantage of such kind of approaches is the accurate description of the aerothermal environment obtained through the full resolution of the mechanical, thermal, and chemical boundary layers that develop over an ablative surface when exposed to a high-enthalpy flow. This paper is devoted to the assessment of the uncertainties of such kind of thermo-chemical ablation model and to study their effect on the model final outcomes. A sphere of non-pyrolyzing carbon-based material, exposed to conditions similar to those of a typical plasma wind tunnel test, is the selected test case for the analysis. Two forward non-intrusive uncertainty quantification techniques are used to analyze the influence of the defined set of uncertain parameters on the estimate of steady-state mass blowing flux and surface temperature. Our results show that for the selected conditions, and uncertainty ranges, the surface nitridation reaction probability has the strongest impact on the model outcomes.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2017.04.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3266-3549</orcidid><orcidid>https://orcid.org/0000-0002-4376-1518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2017-08, Vol.118, p.497-509
issn 1290-0729
1778-4166
language eng
recordid cdi_hal_primary_oai_HAL_hal_01501225v1
source ScienceDirect Freedom Collection 2022-2024
subjects Ablation modeling
Carbon ablators
Fluid Dynamics
Gas-surface interaction
Physics
Thermal protection system materials
Uncertainty analysis
title Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemical%20ablation%20modeling%20forward%20uncertainty%20analysis%E2%80%94Part%20I:%20Numerical%20methods%20and%20effect%20of%20model%20parameters&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Turchi,%20Alessandro&rft.date=2017-08-01&rft.volume=118&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2017.04.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01501225v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-2cd7176a0487cf5ff022f5d6e041b44af0bdb39a357e06de08b61716b7347a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true