Loading…
Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions
The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the prin...
Saved in:
Published in: | Applied mathematical finance. 2018-11, Vol.25 (5-6), p.511-532 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3 |
container_end_page | 532 |
container_issue | 5-6 |
container_start_page | 511 |
container_title | Applied mathematical finance. |
container_volume | 25 |
creator | Baptiste, Julien Lépinette, Emmanuel |
description | The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type
as the number of discrete dates
. Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples. |
doi_str_mv | 10.1080/1350486X.2018.1513806 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01507267v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212028838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</originalsourceid><addsrcrecordid>eNp9kctO3DAUhqOqSIVpHwHJEqsuMvU9hlVhuAzSiFbiInaW49gdoyQH7GTQvESfuU6HsuzKxz7f-SydvygOCZ4TrPA3wgTmSj7OKSZqTgRhCssPxT7hUpacEfYx15kpJ-hTcZDSE8aEKsn3i9_nwfsxBejRxctohlykE7SAfuPiL9dbh8CjYe3Q5djbqWtadGvXrnPo3MWwcQ3yEbq_yFnooQsZuIvOodcwrNEKbL4_QJvNbRi2yENEN_mz2w4g93-aLXj_Lk-fiz1v2uS-vJ2z4v7y4m6xLFc_rq4Xp6vSMl7JUtlK1JxJ62vS1JZVDTv2jPBjpnwtRIUJ5tRzqwxrpKBeWuUaJgStas8r07BZ8XXnXZtWP8fQmbjVYIJenq709IaJwBWV1YZl9mjHPkd4GV0a9BOMMS8iaUoJxVQppjIldpSNkFJ0_l1LsJ5i0v9i0lNM-i2mPPd9Nxf6vJvOvEJsGz2YbQvRR9PbkDT7v-IPUzeaKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212028838</pqid></control><display><type>article</type><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor & Francis</source><source>EBSCOhost Econlit with Full Text</source><creator>Baptiste, Julien ; Lépinette, Emmanuel</creator><creatorcontrib>Baptiste, Julien ; Lépinette, Emmanuel</creatorcontrib><description>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type
as the number of discrete dates
. Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</description><identifier>ISSN: 1350-486X</identifier><identifier>EISSN: 1466-4313</identifier><identifier>DOI: 10.1080/1350486X.2018.1513806</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Analysis of PDEs ; And phrases: binomial tree model ; Convergence ; diffusion partial differential equations ; Economic models ; European option pricing ; Finite difference method ; finite difference scheme ; Finite element method ; finite element scheme ; Formulas (mathematics) ; Functionals ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical methods ; Volatility</subject><ispartof>Applied mathematical finance., 2018-11, Vol.25 (5-6), p.511-532</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</cites><orcidid>0000-0002-0738-4823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01507267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baptiste, Julien</creatorcontrib><creatorcontrib>Lépinette, Emmanuel</creatorcontrib><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><title>Applied mathematical finance.</title><description>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type
as the number of discrete dates
. Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</description><subject>Analysis of PDEs</subject><subject>And phrases: binomial tree model</subject><subject>Convergence</subject><subject>diffusion partial differential equations</subject><subject>Economic models</subject><subject>European option pricing</subject><subject>Finite difference method</subject><subject>finite difference scheme</subject><subject>Finite element method</subject><subject>finite element scheme</subject><subject>Formulas (mathematics)</subject><subject>Functionals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical methods</subject><subject>Volatility</subject><issn>1350-486X</issn><issn>1466-4313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3DAUhqOqSIVpHwHJEqsuMvU9hlVhuAzSiFbiInaW49gdoyQH7GTQvESfuU6HsuzKxz7f-SydvygOCZ4TrPA3wgTmSj7OKSZqTgRhCssPxT7hUpacEfYx15kpJ-hTcZDSE8aEKsn3i9_nwfsxBejRxctohlykE7SAfuPiL9dbh8CjYe3Q5djbqWtadGvXrnPo3MWwcQ3yEbq_yFnooQsZuIvOodcwrNEKbL4_QJvNbRi2yENEN_mz2w4g93-aLXj_Lk-fiz1v2uS-vJ2z4v7y4m6xLFc_rq4Xp6vSMl7JUtlK1JxJ62vS1JZVDTv2jPBjpnwtRIUJ5tRzqwxrpKBeWuUaJgStas8r07BZ8XXnXZtWP8fQmbjVYIJenq709IaJwBWV1YZl9mjHPkd4GV0a9BOMMS8iaUoJxVQppjIldpSNkFJ0_l1LsJ5i0v9i0lNM-i2mPPd9Nxf6vJvOvEJsGz2YbQvRR9PbkDT7v-IPUzeaKw</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Baptiste, Julien</creator><creator>Lépinette, Emmanuel</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis (Routledge): SSH Titles</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0738-4823</orcidid></search><sort><creationdate>20181102</creationdate><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><author>Baptiste, Julien ; Lépinette, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of PDEs</topic><topic>And phrases: binomial tree model</topic><topic>Convergence</topic><topic>diffusion partial differential equations</topic><topic>Economic models</topic><topic>European option pricing</topic><topic>Finite difference method</topic><topic>finite difference scheme</topic><topic>Finite element method</topic><topic>finite element scheme</topic><topic>Formulas (mathematics)</topic><topic>Functionals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical methods</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baptiste, Julien</creatorcontrib><creatorcontrib>Lépinette, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied mathematical finance.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baptiste, Julien</au><au>Lépinette, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</atitle><jtitle>Applied mathematical finance.</jtitle><date>2018-11-02</date><risdate>2018</risdate><volume>25</volume><issue>5-6</issue><spage>511</spage><epage>532</epage><pages>511-532</pages><issn>1350-486X</issn><eissn>1466-4313</eissn><abstract>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type
as the number of discrete dates
. Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1350486X.2018.1513806</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0738-4823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-486X |
ispartof | Applied mathematical finance., 2018-11, Vol.25 (5-6), p.511-532 |
issn | 1350-486X 1466-4313 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01507267v3 |
source | EBSCOhost Business Source Ultimate; Taylor & Francis; EBSCOhost Econlit with Full Text |
subjects | Analysis of PDEs And phrases: binomial tree model Convergence diffusion partial differential equations Economic models European option pricing Finite difference method finite difference scheme Finite element method finite element scheme Formulas (mathematics) Functionals Mathematical analysis Mathematical models Mathematics Numerical methods Volatility |
title | Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Equations:%20Convergence%20of%20the%20Functional%20Scheme%20Derived%20from%20the%20Binomial%20Tree%20with%20Local%20Volatility%20for%20Non%20Smooth%20Payoff%20Functions&rft.jtitle=Applied%20mathematical%20finance.&rft.au=Baptiste,%20Julien&rft.date=2018-11-02&rft.volume=25&rft.issue=5-6&rft.spage=511&rft.epage=532&rft.pages=511-532&rft.issn=1350-486X&rft.eissn=1466-4313&rft_id=info:doi/10.1080/1350486X.2018.1513806&rft_dat=%3Cproquest_hal_p%3E2212028838%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212028838&rft_id=info:pmid/&rfr_iscdi=true |