Loading…

Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions

The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the prin...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical finance. 2018-11, Vol.25 (5-6), p.511-532
Main Authors: Baptiste, Julien, Lépinette, Emmanuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3
container_end_page 532
container_issue 5-6
container_start_page 511
container_title Applied mathematical finance.
container_volume 25
creator Baptiste, Julien
Lépinette, Emmanuel
description The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.
doi_str_mv 10.1080/1350486X.2018.1513806
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01507267v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212028838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</originalsourceid><addsrcrecordid>eNp9kctO3DAUhqOqSIVpHwHJEqsuMvU9hlVhuAzSiFbiInaW49gdoyQH7GTQvESfuU6HsuzKxz7f-SydvygOCZ4TrPA3wgTmSj7OKSZqTgRhCssPxT7hUpacEfYx15kpJ-hTcZDSE8aEKsn3i9_nwfsxBejRxctohlykE7SAfuPiL9dbh8CjYe3Q5djbqWtadGvXrnPo3MWwcQ3yEbq_yFnooQsZuIvOodcwrNEKbL4_QJvNbRi2yENEN_mz2w4g93-aLXj_Lk-fiz1v2uS-vJ2z4v7y4m6xLFc_rq4Xp6vSMl7JUtlK1JxJ62vS1JZVDTv2jPBjpnwtRIUJ5tRzqwxrpKBeWuUaJgStas8r07BZ8XXnXZtWP8fQmbjVYIJenq709IaJwBWV1YZl9mjHPkd4GV0a9BOMMS8iaUoJxVQppjIldpSNkFJ0_l1LsJ5i0v9i0lNM-i2mPPd9Nxf6vJvOvEJsGz2YbQvRR9PbkDT7v-IPUzeaKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212028838</pqid></control><display><type>article</type><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor &amp; Francis</source><source>EBSCOhost Econlit with Full Text</source><creator>Baptiste, Julien ; Lépinette, Emmanuel</creator><creatorcontrib>Baptiste, Julien ; Lépinette, Emmanuel</creatorcontrib><description>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</description><identifier>ISSN: 1350-486X</identifier><identifier>EISSN: 1466-4313</identifier><identifier>DOI: 10.1080/1350486X.2018.1513806</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Analysis of PDEs ; And phrases: binomial tree model ; Convergence ; diffusion partial differential equations ; Economic models ; European option pricing ; Finite difference method ; finite difference scheme ; Finite element method ; finite element scheme ; Formulas (mathematics) ; Functionals ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical methods ; Volatility</subject><ispartof>Applied mathematical finance., 2018-11, Vol.25 (5-6), p.511-532</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</cites><orcidid>0000-0002-0738-4823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01507267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baptiste, Julien</creatorcontrib><creatorcontrib>Lépinette, Emmanuel</creatorcontrib><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><title>Applied mathematical finance.</title><description>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</description><subject>Analysis of PDEs</subject><subject>And phrases: binomial tree model</subject><subject>Convergence</subject><subject>diffusion partial differential equations</subject><subject>Economic models</subject><subject>European option pricing</subject><subject>Finite difference method</subject><subject>finite difference scheme</subject><subject>Finite element method</subject><subject>finite element scheme</subject><subject>Formulas (mathematics)</subject><subject>Functionals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical methods</subject><subject>Volatility</subject><issn>1350-486X</issn><issn>1466-4313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3DAUhqOqSIVpHwHJEqsuMvU9hlVhuAzSiFbiInaW49gdoyQH7GTQvESfuU6HsuzKxz7f-SydvygOCZ4TrPA3wgTmSj7OKSZqTgRhCssPxT7hUpacEfYx15kpJ-hTcZDSE8aEKsn3i9_nwfsxBejRxctohlykE7SAfuPiL9dbh8CjYe3Q5djbqWtadGvXrnPo3MWwcQ3yEbq_yFnooQsZuIvOodcwrNEKbL4_QJvNbRi2yENEN_mz2w4g93-aLXj_Lk-fiz1v2uS-vJ2z4v7y4m6xLFc_rq4Xp6vSMl7JUtlK1JxJ62vS1JZVDTv2jPBjpnwtRIUJ5tRzqwxrpKBeWuUaJgStas8r07BZ8XXnXZtWP8fQmbjVYIJenq709IaJwBWV1YZl9mjHPkd4GV0a9BOMMS8iaUoJxVQppjIldpSNkFJ0_l1LsJ5i0v9i0lNM-i2mPPd9Nxf6vJvOvEJsGz2YbQvRR9PbkDT7v-IPUzeaKw</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Baptiste, Julien</creator><creator>Lépinette, Emmanuel</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis (Routledge): SSH Titles</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0738-4823</orcidid></search><sort><creationdate>20181102</creationdate><title>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</title><author>Baptiste, Julien ; Lépinette, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of PDEs</topic><topic>And phrases: binomial tree model</topic><topic>Convergence</topic><topic>diffusion partial differential equations</topic><topic>Economic models</topic><topic>European option pricing</topic><topic>Finite difference method</topic><topic>finite difference scheme</topic><topic>Finite element method</topic><topic>finite element scheme</topic><topic>Formulas (mathematics)</topic><topic>Functionals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical methods</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baptiste, Julien</creatorcontrib><creatorcontrib>Lépinette, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied mathematical finance.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baptiste, Julien</au><au>Lépinette, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions</atitle><jtitle>Applied mathematical finance.</jtitle><date>2018-11-02</date><risdate>2018</risdate><volume>25</volume><issue>5-6</issue><spage>511</spage><epage>532</epage><pages>511-532</pages><issn>1350-486X</issn><eissn>1466-4313</eissn><abstract>The function solution to the functional scheme derived from the binomial tree financial model with local volatility converges to the solution of a diffusion equation of type as the number of discrete dates . Contrarily to classical numerical methods, in particular finite difference methods, the principle behind the functional scheme is only based on a discretization in time. We establish the uniform convergence in time of the scheme and provide the rate of convergence when the payoff function is not necessarily smooth as in finance. We illustrate the convergence result and compare its performance to the finite difference and finite element methods by numerical examples.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/1350486X.2018.1513806</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0738-4823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-486X
ispartof Applied mathematical finance., 2018-11, Vol.25 (5-6), p.511-532
issn 1350-486X
1466-4313
language eng
recordid cdi_hal_primary_oai_HAL_hal_01507267v3
source EBSCOhost Business Source Ultimate; Taylor & Francis; EBSCOhost Econlit with Full Text
subjects Analysis of PDEs
And phrases: binomial tree model
Convergence
diffusion partial differential equations
Economic models
European option pricing
Finite difference method
finite difference scheme
Finite element method
finite element scheme
Formulas (mathematics)
Functionals
Mathematical analysis
Mathematical models
Mathematics
Numerical methods
Volatility
title Diffusion Equations: Convergence of the Functional Scheme Derived from the Binomial Tree with Local Volatility for Non Smooth Payoff Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Equations:%20Convergence%20of%20the%20Functional%20Scheme%20Derived%20from%20the%20Binomial%20Tree%20with%20Local%20Volatility%20for%20Non%20Smooth%20Payoff%20Functions&rft.jtitle=Applied%20mathematical%20finance.&rft.au=Baptiste,%20Julien&rft.date=2018-11-02&rft.volume=25&rft.issue=5-6&rft.spage=511&rft.epage=532&rft.pages=511-532&rft.issn=1350-486X&rft.eissn=1466-4313&rft_id=info:doi/10.1080/1350486X.2018.1513806&rft_dat=%3Cproquest_hal_p%3E2212028838%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3476-8c75b436cfb1dbc37d39f314938fb55701042f4c8a3d652f6c8ed35527bf47ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212028838&rft_id=info:pmid/&rfr_iscdi=true