Loading…
Power Spectral Clustering
Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O (...
Saved in:
Published in: | Journal of mathematical imaging and vision 2020-11, Vol.62 (9), p.1195-1213 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003 |
container_end_page | 1213 |
container_issue | 9 |
container_start_page | 1195 |
container_title | Journal of mathematical imaging and vision |
container_volume | 62 |
creator | Challa, Aditya Danda, Sravan Sagar, B. S. Daya Najman, Laurent |
description | Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is
O
(
n
3
/
2
)
. This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from
Γ
-convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as
O
(
n
log
(
n
)
)
under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed. |
doi_str_mv | 10.1007/s10851-020-00980-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01516649v4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450384551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AD0tePIQnSRNJjkui-sKCwrqObRpqrvUbU1axX9vakVvngaG92PmIeSMwSUDwKvIQEtGgQMFMBoo7pEJkygoKi32yQQMz6gxgIfkKMYtAGjOcEJO75sPH2YPrXddyOvZou5j58Nm93xMDqq8jv7kZ07J0_L6cbGi67ub28V8TZ0w2FHFlCowtRfIM85L5EZog-gqp4SquKq0Ri6ZM9qJErhjVaFV6QuVaygAxJRcjLkveW3bsHnNw6dt8o1dzdd22AGTqSMz71nSno_aNjRvvY-d3TZ92KXzLM8kCJ1JyZKKjyoXmhiDr35jGdgBlx1x2YTLfuOymExiNMV2-N6Hv-h_XF_RL2kq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450384551</pqid></control><display><type>article</type><title>Power Spectral Clustering</title><source>Springer Nature</source><creator>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</creator><creatorcontrib>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</creatorcontrib><description>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is
O
(
n
3
/
2
)
. This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from
Γ
-convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as
O
(
n
log
(
n
)
)
under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-020-00980-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Clustering ; Combinatorial analysis ; Computer Science ; Computer Vision and Pattern Recognition ; Graph theory ; Image processing ; Image Processing and Computer Vision ; Image segmentation ; Machine Learning ; Mathematical Methods in Physics ; Signal,Image and Speech Processing ; Spectra</subject><ispartof>Journal of mathematical imaging and vision, 2020-11, Vol.62 (9), p.1195-1213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</citedby><cites>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</cites><orcidid>0000-0002-0872-0534 ; 0000-0002-6190-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01516649$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Challa, Aditya</creatorcontrib><creatorcontrib>Danda, Sravan</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><title>Power Spectral Clustering</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is
O
(
n
3
/
2
)
. This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from
Γ
-convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as
O
(
n
log
(
n
)
)
under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Graph theory</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Machine Learning</subject><subject>Mathematical Methods in Physics</subject><subject>Signal,Image and Speech Processing</subject><subject>Spectra</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AD0tePIQnSRNJjkui-sKCwrqObRpqrvUbU1axX9vakVvngaG92PmIeSMwSUDwKvIQEtGgQMFMBoo7pEJkygoKi32yQQMz6gxgIfkKMYtAGjOcEJO75sPH2YPrXddyOvZou5j58Nm93xMDqq8jv7kZ07J0_L6cbGi67ub28V8TZ0w2FHFlCowtRfIM85L5EZog-gqp4SquKq0Ri6ZM9qJErhjVaFV6QuVaygAxJRcjLkveW3bsHnNw6dt8o1dzdd22AGTqSMz71nSno_aNjRvvY-d3TZ92KXzLM8kCJ1JyZKKjyoXmhiDr35jGdgBlx1x2YTLfuOymExiNMV2-N6Hv-h_XF_RL2kq</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Challa, Aditya</creator><creator>Danda, Sravan</creator><creator>Sagar, B. S. Daya</creator><creator>Najman, Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0872-0534</orcidid><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid></search><sort><creationdate>20201101</creationdate><title>Power Spectral Clustering</title><author>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Graph theory</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Machine Learning</topic><topic>Mathematical Methods in Physics</topic><topic>Signal,Image and Speech Processing</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challa, Aditya</creatorcontrib><creatorcontrib>Danda, Sravan</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challa, Aditya</au><au>Danda, Sravan</au><au>Sagar, B. S. Daya</au><au>Najman, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Spectral Clustering</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>62</volume><issue>9</issue><spage>1195</spage><epage>1213</epage><pages>1195-1213</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is
O
(
n
3
/
2
)
. This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from
Γ
-convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as
O
(
n
log
(
n
)
)
under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-020-00980-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0872-0534</orcidid><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2020-11, Vol.62 (9), p.1195-1213 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01516649v4 |
source | Springer Nature |
subjects | Algorithms Applications of Mathematics Clustering Combinatorial analysis Computer Science Computer Vision and Pattern Recognition Graph theory Image processing Image Processing and Computer Vision Image segmentation Machine Learning Mathematical Methods in Physics Signal,Image and Speech Processing Spectra |
title | Power Spectral Clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Spectral%20Clustering&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Challa,%20Aditya&rft.date=2020-11-01&rft.volume=62&rft.issue=9&rft.spage=1195&rft.epage=1213&rft.pages=1195-1213&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-020-00980-7&rft_dat=%3Cproquest_hal_p%3E2450384551%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450384551&rft_id=info:pmid/&rfr_iscdi=true |