Loading…

Power Spectral Clustering

Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O (...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical imaging and vision 2020-11, Vol.62 (9), p.1195-1213
Main Authors: Challa, Aditya, Danda, Sravan, Sagar, B. S. Daya, Najman, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003
cites cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003
container_end_page 1213
container_issue 9
container_start_page 1195
container_title Journal of mathematical imaging and vision
container_volume 62
creator Challa, Aditya
Danda, Sravan
Sagar, B. S. Daya
Najman, Laurent
description Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O ( n 3 / 2 ) . This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from Γ -convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as O ( n log ( n ) ) under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.
doi_str_mv 10.1007/s10851-020-00980-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01516649v4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450384551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AD0tePIQnSRNJjkui-sKCwrqObRpqrvUbU1axX9vakVvngaG92PmIeSMwSUDwKvIQEtGgQMFMBoo7pEJkygoKi32yQQMz6gxgIfkKMYtAGjOcEJO75sPH2YPrXddyOvZou5j58Nm93xMDqq8jv7kZ07J0_L6cbGi67ub28V8TZ0w2FHFlCowtRfIM85L5EZog-gqp4SquKq0Ri6ZM9qJErhjVaFV6QuVaygAxJRcjLkveW3bsHnNw6dt8o1dzdd22AGTqSMz71nSno_aNjRvvY-d3TZ92KXzLM8kCJ1JyZKKjyoXmhiDr35jGdgBlx1x2YTLfuOymExiNMV2-N6Hv-h_XF_RL2kq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450384551</pqid></control><display><type>article</type><title>Power Spectral Clustering</title><source>Springer Nature</source><creator>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</creator><creatorcontrib>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</creatorcontrib><description>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O ( n 3 / 2 ) . This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from Γ -convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as O ( n log ( n ) ) under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-020-00980-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Clustering ; Combinatorial analysis ; Computer Science ; Computer Vision and Pattern Recognition ; Graph theory ; Image processing ; Image Processing and Computer Vision ; Image segmentation ; Machine Learning ; Mathematical Methods in Physics ; Signal,Image and Speech Processing ; Spectra</subject><ispartof>Journal of mathematical imaging and vision, 2020-11, Vol.62 (9), p.1195-1213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</citedby><cites>FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</cites><orcidid>0000-0002-0872-0534 ; 0000-0002-6190-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01516649$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Challa, Aditya</creatorcontrib><creatorcontrib>Danda, Sravan</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><title>Power Spectral Clustering</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O ( n 3 / 2 ) . This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from Γ -convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as O ( n log ( n ) ) under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Graph theory</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Machine Learning</subject><subject>Mathematical Methods in Physics</subject><subject>Signal,Image and Speech Processing</subject><subject>Spectra</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AD0tePIQnSRNJjkui-sKCwrqObRpqrvUbU1axX9vakVvngaG92PmIeSMwSUDwKvIQEtGgQMFMBoo7pEJkygoKi32yQQMz6gxgIfkKMYtAGjOcEJO75sPH2YPrXddyOvZou5j58Nm93xMDqq8jv7kZ07J0_L6cbGi67ub28V8TZ0w2FHFlCowtRfIM85L5EZog-gqp4SquKq0Ri6ZM9qJErhjVaFV6QuVaygAxJRcjLkveW3bsHnNw6dt8o1dzdd22AGTqSMz71nSno_aNjRvvY-d3TZ92KXzLM8kCJ1JyZKKjyoXmhiDr35jGdgBlx1x2YTLfuOymExiNMV2-N6Hv-h_XF_RL2kq</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Challa, Aditya</creator><creator>Danda, Sravan</creator><creator>Sagar, B. S. Daya</creator><creator>Najman, Laurent</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0872-0534</orcidid><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid></search><sort><creationdate>20201101</creationdate><title>Power Spectral Clustering</title><author>Challa, Aditya ; Danda, Sravan ; Sagar, B. S. Daya ; Najman, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Graph theory</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Machine Learning</topic><topic>Mathematical Methods in Physics</topic><topic>Signal,Image and Speech Processing</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challa, Aditya</creatorcontrib><creatorcontrib>Danda, Sravan</creatorcontrib><creatorcontrib>Sagar, B. S. Daya</creatorcontrib><creatorcontrib>Najman, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challa, Aditya</au><au>Danda, Sravan</au><au>Sagar, B. S. Daya</au><au>Najman, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Spectral Clustering</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>62</volume><issue>9</issue><spage>1195</spage><epage>1213</epage><pages>1195-1213</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is O ( n 3 / 2 ) . This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from Γ -convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as O ( n log ( n ) ) under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-020-00980-7</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0872-0534</orcidid><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2020-11, Vol.62 (9), p.1195-1213
issn 0924-9907
1573-7683
language eng
recordid cdi_hal_primary_oai_HAL_hal_01516649v4
source Springer Nature
subjects Algorithms
Applications of Mathematics
Clustering
Combinatorial analysis
Computer Science
Computer Vision and Pattern Recognition
Graph theory
Image processing
Image Processing and Computer Vision
Image segmentation
Machine Learning
Mathematical Methods in Physics
Signal,Image and Speech Processing
Spectra
title Power Spectral Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Spectral%20Clustering&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Challa,%20Aditya&rft.date=2020-11-01&rft.volume=62&rft.issue=9&rft.spage=1195&rft.epage=1213&rft.pages=1195-1213&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-020-00980-7&rft_dat=%3Cproquest_hal_p%3E2450384551%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6166b7085b72422d72938977cfc636f26f887251c98c3d02c1fb86deb6a80b003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450384551&rft_id=info:pmid/&rfr_iscdi=true