Loading…

Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption

The main objective of this work concerns the coupling of biomass gasification reaction and CO 2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO 2 sorption to enhance tar removal and hydrogen production. It also proves the effic...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2016-11, Vol.23 (22), p.22253-22266
Main Authors: Zamboni, I., Debal, M., Matt, M., Girods, P., Kiennemann, A., Rogaume, Y., Courson, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3
cites cdi_FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3
container_end_page 22266
container_issue 22
container_start_page 22253
container_title Environmental science and pollution research international
container_volume 23
creator Zamboni, I.
Debal, M.
Matt, M.
Girods, P.
Kiennemann, A.
Rogaume, Y.
Courson, C.
description The main objective of this work concerns the coupling of biomass gasification reaction and CO 2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO 2 sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-Ca 12 Al 14 O 33 /olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO 2 sorption (CaO-Ca 12 Al 14 O 33 ) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-Ca 12 Al 14 O 33 /olivine sorbent/catalyst presents a good CO 2 sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO 2 selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-Ca 12 Al 14 O 33 /olivine as bed material at 700 °C leads to a higher H 2 production than olivine at 800 °C thanks to CO 2 sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.
doi_str_mv 10.1007/s11356-016-6444-4
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01518102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826662952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3</originalsourceid><addsrcrecordid>eNp1kV9LwzAUxYMoOP98AN8KvmwP1XvTJE0fx9BNmOxFn0PaJltH18ymFfbtTamICD5dOPzO4R4OIXcIDwiQPnrEhIsYUMSCMRazMzJBgSxOWZadkwlkQcSEsUty5f0egEJG0wlZLnSn61NXFdFW-8pWhe4q10TORnnlDtr7aPpa-UI33a73s8g0O90UpozyU7TY0Mi79jgYbsiF1bU3t9_3mrw_P70tVvF6s3xZzNdxwSh0cW64SBNmk5Iil1xKbjTXBuWgJcIyk5UpLUEUPIHSQk5TY0MNiTw1UJrkmszG3J2u1bGtDro9KacrtZqv1aABcpQI9BMDOx3ZY-s-euM7dQhNTF3rxrjeK5RUCEEzTgN6_wfdu75tQpNACZCBzNJA4UgVrfO-NfbnAwQ1zKDGGcITQg0zKBY8dPT4wDZb0_5K_tf0BZ71h3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860882697</pqid></control><display><type>article</type><title>Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Zamboni, I. ; Debal, M. ; Matt, M. ; Girods, P. ; Kiennemann, A. ; Rogaume, Y. ; Courson, C.</creator><creatorcontrib>Zamboni, I. ; Debal, M. ; Matt, M. ; Girods, P. ; Kiennemann, A. ; Rogaume, Y. ; Courson, C.</creatorcontrib><description>The main objective of this work concerns the coupling of biomass gasification reaction and CO 2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO 2 sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-Ca 12 Al 14 O 33 /olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO 2 sorption (CaO-Ca 12 Al 14 O 33 ) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-Ca 12 Al 14 O 33 /olivine sorbent/catalyst presents a good CO 2 sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO 2 selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-Ca 12 Al 14 O 33 /olivine as bed material at 700 °C leads to a higher H 2 production than olivine at 800 °C thanks to CO 2 sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-016-6444-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biomass ; Carbon dioxide ; Catalysis ; Condensed Matter ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Fixed bed reactors ; Fluidized bed reactors ; Fluidized beds ; Gases ; Gasification ; Hydrocarbons ; Hydrogen ; Hydrogen production ; Liquid chromatography ; Materials Science ; Physics ; Reactors ; Sorption ; Steam ; Studies ; Synthesis gas ; Tar ; Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization ; Thermogravimetric analysis ; Toluene ; Waste Water Technology ; Water Management ; Water Pollution Control ; X-ray diffraction</subject><ispartof>Environmental science and pollution research international, 2016-11, Vol.23 (22), p.22253-22266</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3</citedby><cites>FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3</cites><orcidid>0000-0002-6818-4155 ; 0000-0001-8229-2219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1860882697/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1860882697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01518102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zamboni, I.</creatorcontrib><creatorcontrib>Debal, M.</creatorcontrib><creatorcontrib>Matt, M.</creatorcontrib><creatorcontrib>Girods, P.</creatorcontrib><creatorcontrib>Kiennemann, A.</creatorcontrib><creatorcontrib>Rogaume, Y.</creatorcontrib><creatorcontrib>Courson, C.</creatorcontrib><title>Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>The main objective of this work concerns the coupling of biomass gasification reaction and CO 2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO 2 sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-Ca 12 Al 14 O 33 /olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO 2 sorption (CaO-Ca 12 Al 14 O 33 ) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-Ca 12 Al 14 O 33 /olivine sorbent/catalyst presents a good CO 2 sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO 2 selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-Ca 12 Al 14 O 33 /olivine as bed material at 700 °C leads to a higher H 2 production than olivine at 800 °C thanks to CO 2 sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Condensed Matter</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Fixed bed reactors</subject><subject>Fluidized bed reactors</subject><subject>Fluidized beds</subject><subject>Gases</subject><subject>Gasification</subject><subject>Hydrocarbons</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Liquid chromatography</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Reactors</subject><subject>Sorption</subject><subject>Steam</subject><subject>Studies</subject><subject>Synthesis gas</subject><subject>Tar</subject><subject>Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization</subject><subject>Thermogravimetric analysis</subject><subject>Toluene</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>X-ray diffraction</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV9LwzAUxYMoOP98AN8KvmwP1XvTJE0fx9BNmOxFn0PaJltH18ymFfbtTamICD5dOPzO4R4OIXcIDwiQPnrEhIsYUMSCMRazMzJBgSxOWZadkwlkQcSEsUty5f0egEJG0wlZLnSn61NXFdFW-8pWhe4q10TORnnlDtr7aPpa-UI33a73s8g0O90UpozyU7TY0Mi79jgYbsiF1bU3t9_3mrw_P70tVvF6s3xZzNdxwSh0cW64SBNmk5Iil1xKbjTXBuWgJcIyk5UpLUEUPIHSQk5TY0MNiTw1UJrkmszG3J2u1bGtDro9KacrtZqv1aABcpQI9BMDOx3ZY-s-euM7dQhNTF3rxrjeK5RUCEEzTgN6_wfdu75tQpNACZCBzNJA4UgVrfO-NfbnAwQ1zKDGGcITQg0zKBY8dPT4wDZb0_5K_tf0BZ71h3I</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Zamboni, I.</creator><creator>Debal, M.</creator><creator>Matt, M.</creator><creator>Girods, P.</creator><creator>Kiennemann, A.</creator><creator>Rogaume, Y.</creator><creator>Courson, C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6818-4155</orcidid><orcidid>https://orcid.org/0000-0001-8229-2219</orcidid></search><sort><creationdate>20161101</creationdate><title>Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption</title><author>Zamboni, I. ; Debal, M. ; Matt, M. ; Girods, P. ; Kiennemann, A. ; Rogaume, Y. ; Courson, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Condensed Matter</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Fixed bed reactors</topic><topic>Fluidized bed reactors</topic><topic>Fluidized beds</topic><topic>Gases</topic><topic>Gasification</topic><topic>Hydrocarbons</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Liquid chromatography</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Reactors</topic><topic>Sorption</topic><topic>Steam</topic><topic>Studies</topic><topic>Synthesis gas</topic><topic>Tar</topic><topic>Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization</topic><topic>Thermogravimetric analysis</topic><topic>Toluene</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamboni, I.</creatorcontrib><creatorcontrib>Debal, M.</creatorcontrib><creatorcontrib>Matt, M.</creatorcontrib><creatorcontrib>Girods, P.</creatorcontrib><creatorcontrib>Kiennemann, A.</creatorcontrib><creatorcontrib>Rogaume, Y.</creatorcontrib><creatorcontrib>Courson, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamboni, I.</au><au>Debal, M.</au><au>Matt, M.</au><au>Girods, P.</au><au>Kiennemann, A.</au><au>Rogaume, Y.</au><au>Courson, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>23</volume><issue>22</issue><spage>22253</spage><epage>22266</epage><pages>22253-22266</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>The main objective of this work concerns the coupling of biomass gasification reaction and CO 2 sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO 2 sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-Ca 12 Al 14 O 33 /olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO 2 sorption (CaO-Ca 12 Al 14 O 33 ) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-Ca 12 Al 14 O 33 /olivine sorbent/catalyst presents a good CO 2 sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO 2 selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-Ca 12 Al 14 O 33 /olivine as bed material at 700 °C leads to a higher H 2 production than olivine at 800 °C thanks to CO 2 sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-016-6444-4</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6818-4155</orcidid><orcidid>https://orcid.org/0000-0001-8229-2219</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2016-11, Vol.23 (22), p.22253-22266
issn 0944-1344
1614-7499
language eng
recordid cdi_hal_primary_oai_HAL_hal_01518102v1
source ABI/INFORM Global; Springer Link
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Biomass
Carbon dioxide
Catalysis
Condensed Matter
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Fixed bed reactors
Fluidized bed reactors
Fluidized beds
Gases
Gasification
Hydrocarbons
Hydrogen
Hydrogen production
Liquid chromatography
Materials Science
Physics
Reactors
Sorption
Steam
Studies
Synthesis gas
Tar
Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization
Thermogravimetric analysis
Toluene
Waste Water Technology
Water Management
Water Pollution Control
X-ray diffraction
title Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20gasification%20of%20biomass%20(Miscanthus)%20enhanced%20by%20CO2%20sorption&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zamboni,%20I.&rft.date=2016-11-01&rft.volume=23&rft.issue=22&rft.spage=22253&rft.epage=22266&rft.pages=22253-22266&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-016-6444-4&rft_dat=%3Cproquest_hal_p%3E1826662952%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-be56734f3d21585885ea5ae1834f336f4e9d72d06c530df0b27ef6148157e0de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1860882697&rft_id=info:pmid/&rfr_iscdi=true