Loading…

Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy

Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grai...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2015-10, Vol.465, p.54-62
Main Authors: Mouawad, B, Boulnat, X, Fabregue, D, Perez, M, de Carlan, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3
cites cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3
container_end_page 62
container_issue
container_start_page 54
container_title Journal of nuclear materials
container_volume 465
creator Mouawad, B
Boulnat, X
Fabregue, D
Perez, M
de Carlan, Y
description Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.
doi_str_mv 10.1016/j.jnucmat.2015.05.053
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01540089v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808714491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</originalsourceid><addsrcrecordid>eNqNUU2r1EAQHETB9elPEOaoh6w9X8ns8fFQn7Dg5XkeOpNOMstsss5MlL36y03Yh2ehoaAoqrurGHsvYC9A1J9O-9O0-DOWvQRh9rCNesF2wjaq0lbCS7YDkLJSQpjX7E3OJwAwBzA79ucJQ5xTmAZeRuLn4NOcS1p8WRJxnLobTX7EKXiM_JLmC6USKPO550ssCfswER8SrtDxMQwjXx1oGsrIe0oplOBXhihm3l75Zf7dUVotC8a4pOH6lr3qMWZ694x37MeXz08Pj9Xx-9dvD_fHymuAUvVoLXSNJ4Wma6XVdNAC20a3vqlFa43VKDvdNQJVJ-taSmGtVV4rAdI3vbpjH2--I0Z3SeGM6epmDO7x_ug2bg1v3WQPv8Sq_XDTru_-XCgXdw7ZU4w40bxkJ6w0uq61af5DCrYRWh82V3OTbiHnRP2_MwS4rUp3cs9Vuq1KB9so9Rfn8ZZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808714491</pqid></control><display><type>article</type><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><source>ScienceDirect Freedom Collection</source><creator>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</creator><creatorcontrib>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</creatorcontrib><description>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2015.05.053</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Atomizing ; Dislocations ; Engineering Sciences ; Grain size distribution ; Materials ; Mathematical models ; Mechanical properties ; Nanostructure ; Yield stress ; Yttrium oxide</subject><ispartof>Journal of nuclear materials, 2015-10, Vol.465, p.54-62</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</citedby><cites>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</cites><orcidid>0000-0002-7350-4803 ; 0000-0001-8776-2558 ; 0000-0002-2635-7337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01540089$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouawad, B</creatorcontrib><creatorcontrib>Boulnat, X</creatorcontrib><creatorcontrib>Fabregue, D</creatorcontrib><creatorcontrib>Perez, M</creatorcontrib><creatorcontrib>de Carlan, Y</creatorcontrib><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><title>Journal of nuclear materials</title><description>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</description><subject>Atomizing</subject><subject>Dislocations</subject><subject>Engineering Sciences</subject><subject>Grain size distribution</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Yield stress</subject><subject>Yttrium oxide</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2r1EAQHETB9elPEOaoh6w9X8ns8fFQn7Dg5XkeOpNOMstsss5MlL36y03Yh2ehoaAoqrurGHsvYC9A1J9O-9O0-DOWvQRh9rCNesF2wjaq0lbCS7YDkLJSQpjX7E3OJwAwBzA79ucJQ5xTmAZeRuLn4NOcS1p8WRJxnLobTX7EKXiM_JLmC6USKPO550ssCfswER8SrtDxMQwjXx1oGsrIe0oplOBXhihm3l75Zf7dUVotC8a4pOH6lr3qMWZ694x37MeXz08Pj9Xx-9dvD_fHymuAUvVoLXSNJ4Wma6XVdNAC20a3vqlFa43VKDvdNQJVJ-taSmGtVV4rAdI3vbpjH2--I0Z3SeGM6epmDO7x_ug2bg1v3WQPv8Sq_XDTru_-XCgXdw7ZU4w40bxkJ6w0uq61af5DCrYRWh82V3OTbiHnRP2_MwS4rUp3cs9Vuq1KB9so9Rfn8ZZb</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mouawad, B</creator><creator>Boulnat, X</creator><creator>Fabregue, D</creator><creator>Perez, M</creator><creator>de Carlan, Y</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7350-4803</orcidid><orcidid>https://orcid.org/0000-0001-8776-2558</orcidid><orcidid>https://orcid.org/0000-0002-2635-7337</orcidid></search><sort><creationdate>20151001</creationdate><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><author>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomizing</topic><topic>Dislocations</topic><topic>Engineering Sciences</topic><topic>Grain size distribution</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Yield stress</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouawad, B</creatorcontrib><creatorcontrib>Boulnat, X</creatorcontrib><creatorcontrib>Fabregue, D</creatorcontrib><creatorcontrib>Perez, M</creatorcontrib><creatorcontrib>de Carlan, Y</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouawad, B</au><au>Boulnat, X</au><au>Fabregue, D</au><au>Perez, M</au><au>de Carlan, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>465</volume><spage>54</spage><epage>62</epage><pages>54-62</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</abstract><pub>Elsevier</pub><doi>10.1016/j.jnucmat.2015.05.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7350-4803</orcidid><orcidid>https://orcid.org/0000-0001-8776-2558</orcidid><orcidid>https://orcid.org/0000-0002-2635-7337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2015-10, Vol.465, p.54-62
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_01540089v1
source ScienceDirect Freedom Collection
subjects Atomizing
Dislocations
Engineering Sciences
Grain size distribution
Materials
Mathematical models
Mechanical properties
Nanostructure
Yield stress
Yttrium oxide
title Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20microstructure%20and%20the%20mechanical%20properties%20of%20ultrafine%20grained%20high%20strength%20ferritic%20steels%20by%20powder%20metallurgy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Mouawad,%20B&rft.date=2015-10-01&rft.volume=465&rft.spage=54&rft.epage=62&rft.pages=54-62&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2015.05.053&rft_dat=%3Cproquest_hal_p%3E1808714491%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808714491&rft_id=info:pmid/&rfr_iscdi=true