Loading…
Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy
Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grai...
Saved in:
Published in: | Journal of nuclear materials 2015-10, Vol.465, p.54-62 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3 |
container_end_page | 62 |
container_issue | |
container_start_page | 54 |
container_title | Journal of nuclear materials |
container_volume | 465 |
creator | Mouawad, B Boulnat, X Fabregue, D Perez, M de Carlan, Y |
description | Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions. |
doi_str_mv | 10.1016/j.jnucmat.2015.05.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01540089v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808714491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</originalsourceid><addsrcrecordid>eNqNUU2r1EAQHETB9elPEOaoh6w9X8ns8fFQn7Dg5XkeOpNOMstsss5MlL36y03Yh2ehoaAoqrurGHsvYC9A1J9O-9O0-DOWvQRh9rCNesF2wjaq0lbCS7YDkLJSQpjX7E3OJwAwBzA79ucJQ5xTmAZeRuLn4NOcS1p8WRJxnLobTX7EKXiM_JLmC6USKPO550ssCfswER8SrtDxMQwjXx1oGsrIe0oplOBXhihm3l75Zf7dUVotC8a4pOH6lr3qMWZ694x37MeXz08Pj9Xx-9dvD_fHymuAUvVoLXSNJ4Wma6XVdNAC20a3vqlFa43VKDvdNQJVJ-taSmGtVV4rAdI3vbpjH2--I0Z3SeGM6epmDO7x_ug2bg1v3WQPv8Sq_XDTru_-XCgXdw7ZU4w40bxkJ6w0uq61af5DCrYRWh82V3OTbiHnRP2_MwS4rUp3cs9Vuq1KB9so9Rfn8ZZb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808714491</pqid></control><display><type>article</type><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><source>ScienceDirect Freedom Collection</source><creator>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</creator><creatorcontrib>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</creatorcontrib><description>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2015.05.053</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Atomizing ; Dislocations ; Engineering Sciences ; Grain size distribution ; Materials ; Mathematical models ; Mechanical properties ; Nanostructure ; Yield stress ; Yttrium oxide</subject><ispartof>Journal of nuclear materials, 2015-10, Vol.465, p.54-62</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</citedby><cites>FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</cites><orcidid>0000-0002-7350-4803 ; 0000-0001-8776-2558 ; 0000-0002-2635-7337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01540089$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouawad, B</creatorcontrib><creatorcontrib>Boulnat, X</creatorcontrib><creatorcontrib>Fabregue, D</creatorcontrib><creatorcontrib>Perez, M</creatorcontrib><creatorcontrib>de Carlan, Y</creatorcontrib><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><title>Journal of nuclear materials</title><description>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</description><subject>Atomizing</subject><subject>Dislocations</subject><subject>Engineering Sciences</subject><subject>Grain size distribution</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nanostructure</subject><subject>Yield stress</subject><subject>Yttrium oxide</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUU2r1EAQHETB9elPEOaoh6w9X8ns8fFQn7Dg5XkeOpNOMstsss5MlL36y03Yh2ehoaAoqrurGHsvYC9A1J9O-9O0-DOWvQRh9rCNesF2wjaq0lbCS7YDkLJSQpjX7E3OJwAwBzA79ucJQ5xTmAZeRuLn4NOcS1p8WRJxnLobTX7EKXiM_JLmC6USKPO550ssCfswER8SrtDxMQwjXx1oGsrIe0oplOBXhihm3l75Zf7dUVotC8a4pOH6lr3qMWZ694x37MeXz08Pj9Xx-9dvD_fHymuAUvVoLXSNJ4Wma6XVdNAC20a3vqlFa43VKDvdNQJVJ-taSmGtVV4rAdI3vbpjH2--I0Z3SeGM6epmDO7x_ug2bg1v3WQPv8Sq_XDTru_-XCgXdw7ZU4w40bxkJ6w0uq61af5DCrYRWh82V3OTbiHnRP2_MwS4rUp3cs9Vuq1KB9so9Rfn8ZZb</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Mouawad, B</creator><creator>Boulnat, X</creator><creator>Fabregue, D</creator><creator>Perez, M</creator><creator>de Carlan, Y</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7350-4803</orcidid><orcidid>https://orcid.org/0000-0001-8776-2558</orcidid><orcidid>https://orcid.org/0000-0002-2635-7337</orcidid></search><sort><creationdate>20151001</creationdate><title>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</title><author>Mouawad, B ; Boulnat, X ; Fabregue, D ; Perez, M ; de Carlan, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomizing</topic><topic>Dislocations</topic><topic>Engineering Sciences</topic><topic>Grain size distribution</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nanostructure</topic><topic>Yield stress</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouawad, B</creatorcontrib><creatorcontrib>Boulnat, X</creatorcontrib><creatorcontrib>Fabregue, D</creatorcontrib><creatorcontrib>Perez, M</creatorcontrib><creatorcontrib>de Carlan, Y</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouawad, B</au><au>Boulnat, X</au><au>Fabregue, D</au><au>Perez, M</au><au>de Carlan, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>465</volume><spage>54</spage><epage>62</epage><pages>54-62</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Three model powder materials (i) atomized, (ii) atomized + milled, and, (iii) atomized + milled + alloyed with yttria (Y sub(2)O sub(3)) and titanium were consolidated within Spark Plasma Sintering device at 850, 950 and 1050 degree C. Depending on the materials, nanostructured, or even bimodal grain size distribution can be observed. These structures lead to a wide range of mechanical behavior: the tensile strength at room temperature can be tailored from 500 to 1200 MPa with total elongation from 8 to 35%. The bimodal grain size distribution is believed to provide both good yield stress and ductility. Finally, a yield stress model based on the effect of solute atoms, dislocations, grains boundaries and precipitates is presented and it permits to predict accurately the experimental values for all specimens and conditions.</abstract><pub>Elsevier</pub><doi>10.1016/j.jnucmat.2015.05.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7350-4803</orcidid><orcidid>https://orcid.org/0000-0001-8776-2558</orcidid><orcidid>https://orcid.org/0000-0002-2635-7337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2015-10, Vol.465, p.54-62 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01540089v1 |
source | ScienceDirect Freedom Collection |
subjects | Atomizing Dislocations Engineering Sciences Grain size distribution Materials Mathematical models Mechanical properties Nanostructure Yield stress Yttrium oxide |
title | Tailoring the microstructure and the mechanical properties of ultrafine grained high strength ferritic steels by powder metallurgy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20microstructure%20and%20the%20mechanical%20properties%20of%20ultrafine%20grained%20high%20strength%20ferritic%20steels%20by%20powder%20metallurgy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Mouawad,%20B&rft.date=2015-10-01&rft.volume=465&rft.spage=54&rft.epage=62&rft.pages=54-62&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2015.05.053&rft_dat=%3Cproquest_hal_p%3E1808714491%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-fa880d7ce3a5db284e941ab74bc761b8584a2d4d71a3d2662218883c43102c7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808714491&rft_id=info:pmid/&rfr_iscdi=true |