Loading…

Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms

Summary Coastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudf...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2013-01, Vol.15 (1), p.242-252
Main Authors: Chronopoulou, Panagiota-Myrsini, Fahy, Anne, Coulon, Frédéric, Païssé, Sandrine, Goñi-Urriza, Marisol, Peperzak, Louis, Acuña Alvarez, Laura, McKew, Boyd A., Lawson, Tracy, Timmis, Kenneth N., Duran, Robert, Underwood, Graham J. C., McGenity, Terry J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Coastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.5 cm thick sediment had 7.2 times more cyanobacterial and 1.7 times more diatom rRNA sequences when treated with oil. Photosystem II operating efficiency (Fq′/Fm′) was significantly reduced in oiled sediments at day 7, implying that the initial diatom‐dominated community was negatively affected by oil, but this was no longer apparent by day 21. Oil addition significantly reduced numbers of the key deposit feeders, and the decreased grazing pressure is likely to be a major factor in the increased abundance of both diatoms and cyanobacteria. By day 5 concentrations of dissolved inorganic nitrogen were significantly lower in oiled mesocosms, likely resulting in the observed increase in nifH‐containing, and therefore potentially dinitrogen‐fixing, cyanobacteria. Thus, indirect effects of oil, rather than direct inhibition, are primarily responsible for altering the microphytobenthos.
ISSN:1462-2912
1462-2920
DOI:10.1111/j.1462-2920.2012.02864.x