Loading…
Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets
ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we dis...
Saved in:
Published in: | Journal of chemometrics 2016-08, Vol.30 (8), p.420-429 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773 |
---|---|
cites | cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773 |
container_end_page | 429 |
container_issue | 8 |
container_start_page | 420 |
container_title | Journal of chemometrics |
container_volume | 30 |
creator | El Ghaziri, Angélina Cariou, Véronique Rutledge, Douglas N. Qannari, El Mostafa |
description | ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression.
An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression. |
doi_str_mv | 10.1002/cem.2810 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01557396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835650406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</originalsourceid><addsrcrecordid>eNp10V1r2zAUBmAxOljaDvoTBLtpGW6PrOjDuwtZP5euvSh07EbIyvGi1rZSy06bf1-blJQNdiU4eng5h5eQAwbHDCA9cVgdp5rBBzJikGUJS_WvHTICrWWScc0_kd0YHwD6Pz4ekcWktuU6-khDQauubH1eBvdI57a1EdtIu-jrP3Qaqu---kZvVtisPD5TW88pvrRYRx9q2gbaLrAfvmcd_qBfKTvaBu2Tj4UtI35-e_fI3dnp3fQimd2cX04ns8SNpYZEcyvywkmLApWdY54rxmRRCJgzIVQmrOAIY1m43EruEFECpjkql0GuFN8jR5vYhS3NsvGVbdYmWG8uJjMzzGCI4Zlcsd4ebuyyCU8dxtZUPjosS1tj6KJhmgspYAyyp1_-oQ-ha_pzB8VAiExo_h7omhBjg8V2AwZmaMf07ZihnZ4mG_rsS1z_15np6fXf3scWX7beNo9GKq6Euf95bq7vf6e36urWKP4KD7ueYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810559583</pqid></control><display><type>article</type><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><source>Wiley</source><creator>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</creator><creatorcontrib>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</creatorcontrib><description>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression.
An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2810</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Case studies ; Chemometrics ; ComDim ; Datasets ; Hierarchical Principal Component Analysis ; Illustrations ; Least squares method ; multiblock datasets ; multiblock partial least squares regression ; NMR ; Nuclear magnetic resonance ; Regression ; Regression analysis ; Statistics ; Strategy ; Time domain</subject><ispartof>Journal of chemometrics, 2016-08, Vol.30 (8), p.420-429</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</citedby><cites>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</cites><orcidid>0000-0001-5634-0766 ; 0000-0002-7397-8953 ; 0000-0003-4091-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01557396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Ghaziri, Angélina</creatorcontrib><creatorcontrib>Cariou, Véronique</creatorcontrib><creatorcontrib>Rutledge, Douglas N.</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression.
An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</description><subject>Case studies</subject><subject>Chemometrics</subject><subject>ComDim</subject><subject>Datasets</subject><subject>Hierarchical Principal Component Analysis</subject><subject>Illustrations</subject><subject>Least squares method</subject><subject>multiblock datasets</subject><subject>multiblock partial least squares regression</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Time domain</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10V1r2zAUBmAxOljaDvoTBLtpGW6PrOjDuwtZP5euvSh07EbIyvGi1rZSy06bf1-blJQNdiU4eng5h5eQAwbHDCA9cVgdp5rBBzJikGUJS_WvHTICrWWScc0_kd0YHwD6Pz4ekcWktuU6-khDQauubH1eBvdI57a1EdtIu-jrP3Qaqu---kZvVtisPD5TW88pvrRYRx9q2gbaLrAfvmcd_qBfKTvaBu2Tj4UtI35-e_fI3dnp3fQimd2cX04ns8SNpYZEcyvywkmLApWdY54rxmRRCJgzIVQmrOAIY1m43EruEFECpjkql0GuFN8jR5vYhS3NsvGVbdYmWG8uJjMzzGCI4Zlcsd4ebuyyCU8dxtZUPjosS1tj6KJhmgspYAyyp1_-oQ-ha_pzB8VAiExo_h7omhBjg8V2AwZmaMf07ZihnZ4mG_rsS1z_15np6fXf3scWX7beNo9GKq6Euf95bq7vf6e36urWKP4KD7ueYA</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>El Ghaziri, Angélina</creator><creator>Cariou, Véronique</creator><creator>Rutledge, Douglas N.</creator><creator>Qannari, El Mostafa</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0002-7397-8953</orcidid><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></search><sort><creationdate>201608</creationdate><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><author>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Case studies</topic><topic>Chemometrics</topic><topic>ComDim</topic><topic>Datasets</topic><topic>Hierarchical Principal Component Analysis</topic><topic>Illustrations</topic><topic>Least squares method</topic><topic>multiblock datasets</topic><topic>multiblock partial least squares regression</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Time domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Ghaziri, Angélina</creatorcontrib><creatorcontrib>Cariou, Véronique</creatorcontrib><creatorcontrib>Rutledge, Douglas N.</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Ghaziri, Angélina</au><au>Cariou, Véronique</au><au>Rutledge, Douglas N.</au><au>Qannari, El Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2016-08</date><risdate>2016</risdate><volume>30</volume><issue>8</issue><spage>420</spage><epage>429</epage><pages>420-429</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression.
An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0002-7397-8953</orcidid><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2016-08, Vol.30 (8), p.420-429 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01557396v1 |
source | Wiley |
subjects | Case studies Chemometrics ComDim Datasets Hierarchical Principal Component Analysis Illustrations Least squares method multiblock datasets multiblock partial least squares regression NMR Nuclear magnetic resonance Regression Regression analysis Statistics Strategy Time domain |
title | Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20multiblock%20datasets%20using%20ComDim:%20Overview%20and%20extension%20to%20the%20analysis%20of%20(K%20+%201)%20datasets&rft.jtitle=Journal%20of%20chemometrics&rft.au=El%20Ghaziri,%20Ang%C3%A9lina&rft.date=2016-08&rft.volume=30&rft.issue=8&rft.spage=420&rft.epage=429&rft.pages=420-429&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2810&rft_dat=%3Cproquest_hal_p%3E1835650406%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810559583&rft_id=info:pmid/&rfr_iscdi=true |