Loading…

Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets

ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we dis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemometrics 2016-08, Vol.30 (8), p.420-429
Main Authors: El Ghaziri, Angélina, Cariou, Véronique, Rutledge, Douglas N., Qannari, El Mostafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773
cites cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773
container_end_page 429
container_issue 8
container_start_page 420
container_title Journal of chemometrics
container_volume 30
creator El Ghaziri, Angélina
Cariou, Véronique
Rutledge, Douglas N.
Qannari, El Mostafa
description ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression. An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.
doi_str_mv 10.1002/cem.2810
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01557396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835650406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</originalsourceid><addsrcrecordid>eNp10V1r2zAUBmAxOljaDvoTBLtpGW6PrOjDuwtZP5euvSh07EbIyvGi1rZSy06bf1-blJQNdiU4eng5h5eQAwbHDCA9cVgdp5rBBzJikGUJS_WvHTICrWWScc0_kd0YHwD6Pz4ekcWktuU6-khDQauubH1eBvdI57a1EdtIu-jrP3Qaqu---kZvVtisPD5TW88pvrRYRx9q2gbaLrAfvmcd_qBfKTvaBu2Tj4UtI35-e_fI3dnp3fQimd2cX04ns8SNpYZEcyvywkmLApWdY54rxmRRCJgzIVQmrOAIY1m43EruEFECpjkql0GuFN8jR5vYhS3NsvGVbdYmWG8uJjMzzGCI4Zlcsd4ebuyyCU8dxtZUPjosS1tj6KJhmgspYAyyp1_-oQ-ha_pzB8VAiExo_h7omhBjg8V2AwZmaMf07ZihnZ4mG_rsS1z_15np6fXf3scWX7beNo9GKq6Euf95bq7vf6e36urWKP4KD7ueYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810559583</pqid></control><display><type>article</type><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><source>Wiley</source><creator>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</creator><creatorcontrib>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</creatorcontrib><description>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression. An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2810</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Case studies ; Chemometrics ; ComDim ; Datasets ; Hierarchical Principal Component Analysis ; Illustrations ; Least squares method ; multiblock datasets ; multiblock partial least squares regression ; NMR ; Nuclear magnetic resonance ; Regression ; Regression analysis ; Statistics ; Strategy ; Time domain</subject><ispartof>Journal of chemometrics, 2016-08, Vol.30 (8), p.420-429</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</citedby><cites>FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</cites><orcidid>0000-0001-5634-0766 ; 0000-0002-7397-8953 ; 0000-0003-4091-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01557396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Ghaziri, Angélina</creatorcontrib><creatorcontrib>Cariou, Véronique</creatorcontrib><creatorcontrib>Rutledge, Douglas N.</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression. An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</description><subject>Case studies</subject><subject>Chemometrics</subject><subject>ComDim</subject><subject>Datasets</subject><subject>Hierarchical Principal Component Analysis</subject><subject>Illustrations</subject><subject>Least squares method</subject><subject>multiblock datasets</subject><subject>multiblock partial least squares regression</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Time domain</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10V1r2zAUBmAxOljaDvoTBLtpGW6PrOjDuwtZP5euvSh07EbIyvGi1rZSy06bf1-blJQNdiU4eng5h5eQAwbHDCA9cVgdp5rBBzJikGUJS_WvHTICrWWScc0_kd0YHwD6Pz4ekcWktuU6-khDQauubH1eBvdI57a1EdtIu-jrP3Qaqu---kZvVtisPD5TW88pvrRYRx9q2gbaLrAfvmcd_qBfKTvaBu2Tj4UtI35-e_fI3dnp3fQimd2cX04ns8SNpYZEcyvywkmLApWdY54rxmRRCJgzIVQmrOAIY1m43EruEFECpjkql0GuFN8jR5vYhS3NsvGVbdYmWG8uJjMzzGCI4Zlcsd4ebuyyCU8dxtZUPjosS1tj6KJhmgspYAyyp1_-oQ-ha_pzB8VAiExo_h7omhBjg8V2AwZmaMf07ZihnZ4mG_rsS1z_15np6fXf3scWX7beNo9GKq6Euf95bq7vf6e36urWKP4KD7ueYA</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>El Ghaziri, Angélina</creator><creator>Cariou, Véronique</creator><creator>Rutledge, Douglas N.</creator><creator>Qannari, El Mostafa</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0002-7397-8953</orcidid><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></search><sort><creationdate>201608</creationdate><title>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</title><author>El Ghaziri, Angélina ; Cariou, Véronique ; Rutledge, Douglas N. ; Qannari, El Mostafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Case studies</topic><topic>Chemometrics</topic><topic>ComDim</topic><topic>Datasets</topic><topic>Hierarchical Principal Component Analysis</topic><topic>Illustrations</topic><topic>Least squares method</topic><topic>multiblock datasets</topic><topic>multiblock partial least squares regression</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Time domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Ghaziri, Angélina</creatorcontrib><creatorcontrib>Cariou, Véronique</creatorcontrib><creatorcontrib>Rutledge, Douglas N.</creatorcontrib><creatorcontrib>Qannari, El Mostafa</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Ghaziri, Angélina</au><au>Cariou, Véronique</au><au>Rutledge, Douglas N.</au><au>Qannari, El Mostafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2016-08</date><risdate>2016</risdate><volume>30</volume><issue>8</issue><spage>420</spage><epage>429</epage><pages>420-429</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>ComDim analysis was designed to assess the relationships between individuals and variables within a multiblock setting where several variables, organized in blocks, are measured on the same individuals. An overview of this method is presented together with some of its properties. Furthermore, we discuss a new extension of the method of analysis to the case of (K+1) datasets. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of a case study involving Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared with those of Multiblock Partial Least Squares regression. An overview of ComDim analysis is presented together with some of its properties. Furthermore, a new extension of this method to the case of K+1 datasets is discussed. More precisely, the aim is to explore the relationships between a response dataset and K other datasets. An illustration of this latter strategy of analysis on the basis of Time Domain ‐ Nuclear Magnetic Resonance data is outlined and the outcomes are compared to those of Multiblock PLS regression.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2810</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0002-7397-8953</orcidid><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2016-08, Vol.30 (8), p.420-429
issn 0886-9383
1099-128X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01557396v1
source Wiley
subjects Case studies
Chemometrics
ComDim
Datasets
Hierarchical Principal Component Analysis
Illustrations
Least squares method
multiblock datasets
multiblock partial least squares regression
NMR
Nuclear magnetic resonance
Regression
Regression analysis
Statistics
Strategy
Time domain
title Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20multiblock%20datasets%20using%20ComDim:%20Overview%20and%20extension%20to%20the%20analysis%20of%20(K%20+%201)%20datasets&rft.jtitle=Journal%20of%20chemometrics&rft.au=El%20Ghaziri,%20Ang%C3%A9lina&rft.date=2016-08&rft.volume=30&rft.issue=8&rft.spage=420&rft.epage=429&rft.pages=420-429&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2810&rft_dat=%3Cproquest_hal_p%3E1835650406%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4680-83a5bfc6ae5e7adebb7116ff50d155795a53e046fcba63ceee60e2be7c90b773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1810559583&rft_id=info:pmid/&rfr_iscdi=true