Loading…
Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation
Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particle...
Saved in:
Published in: | Journal of power sources 2014-06, Vol.256 (256), p.394-403 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83 |
container_end_page | 403 |
container_issue | 256 |
container_start_page | 394 |
container_title | Journal of power sources |
container_volume | 256 |
creator | Usseglio-Viretta, F. Laurencin, J. Delette, G. Villanova, J. Cloetens, P. Leguillon, D. |
description | Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer.
•Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics. |
doi_str_mv | 10.1016/j.jpowsour.2014.01.094 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01563085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314001189</els_id><sourcerecordid>1671588230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEEkPhFZA3SLBI8E8cOzuqqlCkEQgBC9hYN86NxiNPnNrOVGXFO_CGPAkJU7plZdn-7jlX5xTFc0YrRlnzel_tp3CTwhwrTlldUVbRtn5QbJhWouRKyofFhgqlS6WkeFw8SWlPKWVM0U1x_WmGMbsM2R2RHJyNIeU42zxHJHYHEWzG6H4s_2EkYSBAPrjfP399-_yddK70cIuR2DBPHnty4_KOJHeYPeTlih5tjqFHMgUP0aW_Ik-LRwP4hM_uzrPi69vLLxdX5fbju_cX59vS1q3OJVNc1u2A2PWyFW3T68FypgboleadFHUjdYMtx65Wg7bd0DFtbSMsCLC60-KseHXS3YE3U3QHiLcmgDNX51uzvlEmG0G1PLKFfXlipxiuZ0zZHFyy6D2MGOZkWKOY1JoLuqDNCV2TShGHe21GzdqH2Zt_fZi1j8XHLH0sgy_uPCBZ8EOE0bp0P801l7Rp113enDhcwjk6jCZZh6PF3sUlT9MH9z-rP-YIqFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671588230</pqid></control><display><type>article</type><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><source>ScienceDirect Freedom Collection</source><creator>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</creator><creatorcontrib>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</creatorcontrib><description>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer.
•Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.01.094</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activation energy ; Applied sciences ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrode polarization ; Electrodes ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Mathematical models ; Mechanics ; Metals. Metallurgy ; Microstructure ; Nickel ; Ni–YSZ cermet ; Particulate composites ; Phases ; Powder metallurgy. Composite materials ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; SOEC ; Specific surface</subject><ispartof>Journal of power sources, 2014-06, Vol.256 (256), p.394-403</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</citedby><cites>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</cites><orcidid>0000-0001-6480-003X ; 0000-0003-2846-3720 ; 0000-0002-9808-2897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250691$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01563085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Usseglio-Viretta, F.</creatorcontrib><creatorcontrib>Laurencin, J.</creatorcontrib><creatorcontrib>Delette, G.</creatorcontrib><creatorcontrib>Villanova, J.</creatorcontrib><creatorcontrib>Cloetens, P.</creatorcontrib><creatorcontrib>Leguillon, D.</creatorcontrib><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><title>Journal of power sources</title><description>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer.
•Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Ni–YSZ cermet</subject><subject>Particulate composites</subject><subject>Phases</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>SOEC</subject><subject>Specific surface</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSMEEkPhFZA3SLBI8E8cOzuqqlCkEQgBC9hYN86NxiNPnNrOVGXFO_CGPAkJU7plZdn-7jlX5xTFc0YrRlnzel_tp3CTwhwrTlldUVbRtn5QbJhWouRKyofFhgqlS6WkeFw8SWlPKWVM0U1x_WmGMbsM2R2RHJyNIeU42zxHJHYHEWzG6H4s_2EkYSBAPrjfP399-_yddK70cIuR2DBPHnty4_KOJHeYPeTlih5tjqFHMgUP0aW_Ik-LRwP4hM_uzrPi69vLLxdX5fbju_cX59vS1q3OJVNc1u2A2PWyFW3T68FypgboleadFHUjdYMtx65Wg7bd0DFtbSMsCLC60-KseHXS3YE3U3QHiLcmgDNX51uzvlEmG0G1PLKFfXlipxiuZ0zZHFyy6D2MGOZkWKOY1JoLuqDNCV2TShGHe21GzdqH2Zt_fZi1j8XHLH0sgy_uPCBZ8EOE0bp0P801l7Rp113enDhcwjk6jCZZh6PF3sUlT9MH9z-rP-YIqFg</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Usseglio-Viretta, F.</creator><creator>Laurencin, J.</creator><creator>Delette, G.</creator><creator>Villanova, J.</creator><creator>Cloetens, P.</creator><creator>Leguillon, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6480-003X</orcidid><orcidid>https://orcid.org/0000-0003-2846-3720</orcidid><orcidid>https://orcid.org/0000-0002-9808-2897</orcidid></search><sort><creationdate>20140615</creationdate><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><author>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Ni–YSZ cermet</topic><topic>Particulate composites</topic><topic>Phases</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>SOEC</topic><topic>Specific surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usseglio-Viretta, F.</creatorcontrib><creatorcontrib>Laurencin, J.</creatorcontrib><creatorcontrib>Delette, G.</creatorcontrib><creatorcontrib>Villanova, J.</creatorcontrib><creatorcontrib>Cloetens, P.</creatorcontrib><creatorcontrib>Leguillon, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usseglio-Viretta, F.</au><au>Laurencin, J.</au><au>Delette, G.</au><au>Villanova, J.</au><au>Cloetens, P.</au><au>Leguillon, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</atitle><jtitle>Journal of power sources</jtitle><date>2014-06-15</date><risdate>2014</risdate><volume>256</volume><issue>256</issue><spage>394</spage><epage>403</epage><pages>394-403</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer.
•Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.01.094</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6480-003X</orcidid><orcidid>https://orcid.org/0000-0003-2846-3720</orcidid><orcidid>https://orcid.org/0000-0002-9808-2897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-06, Vol.256 (256), p.394-403 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01563085v1 |
source | ScienceDirect Freedom Collection |
subjects | Activation energy Applied sciences Density Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrode polarization Electrodes Energy Energy. Thermal use of fuels Engineering Sciences Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Mathematical models Mechanics Metals. Metallurgy Microstructure Nickel Ni–YSZ cermet Particulate composites Phases Powder metallurgy. Composite materials Production techniques Sintered metals and alloys. Pseudo alloys. Cermets SOEC Specific surface |
title | Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20microstructure%20characterization%20of%20a%20Ni%E2%80%93YSZ%20bi-layer%20coupled%20with%20simulated%20electrode%20polarisation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Usseglio-Viretta,%20F.&rft.date=2014-06-15&rft.volume=256&rft.issue=256&rft.spage=394&rft.epage=403&rft.pages=394-403&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.01.094&rft_dat=%3Cproquest_hal_p%3E1671588230%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671588230&rft_id=info:pmid/&rfr_iscdi=true |