Loading…

Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation

Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particle...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2014-06, Vol.256 (256), p.394-403
Main Authors: Usseglio-Viretta, F., Laurencin, J., Delette, G., Villanova, J., Cloetens, P., Leguillon, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83
cites cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83
container_end_page 403
container_issue 256
container_start_page 394
container_title Journal of power sources
container_volume 256
creator Usseglio-Viretta, F.
Laurencin, J.
Delette, G.
Villanova, J.
Cloetens, P.
Leguillon, D.
description Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer. •Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.
doi_str_mv 10.1016/j.jpowsour.2014.01.094
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01563085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314001189</els_id><sourcerecordid>1671588230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEEkPhFZA3SLBI8E8cOzuqqlCkEQgBC9hYN86NxiNPnNrOVGXFO_CGPAkJU7plZdn-7jlX5xTFc0YrRlnzel_tp3CTwhwrTlldUVbRtn5QbJhWouRKyofFhgqlS6WkeFw8SWlPKWVM0U1x_WmGMbsM2R2RHJyNIeU42zxHJHYHEWzG6H4s_2EkYSBAPrjfP399-_yddK70cIuR2DBPHnty4_KOJHeYPeTlih5tjqFHMgUP0aW_Ik-LRwP4hM_uzrPi69vLLxdX5fbju_cX59vS1q3OJVNc1u2A2PWyFW3T68FypgboleadFHUjdYMtx65Wg7bd0DFtbSMsCLC60-KseHXS3YE3U3QHiLcmgDNX51uzvlEmG0G1PLKFfXlipxiuZ0zZHFyy6D2MGOZkWKOY1JoLuqDNCV2TShGHe21GzdqH2Zt_fZi1j8XHLH0sgy_uPCBZ8EOE0bp0P801l7Rp113enDhcwjk6jCZZh6PF3sUlT9MH9z-rP-YIqFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671588230</pqid></control><display><type>article</type><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><source>ScienceDirect Freedom Collection</source><creator>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</creator><creatorcontrib>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</creatorcontrib><description>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer. •Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.01.094</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activation energy ; Applied sciences ; Density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrode polarization ; Electrodes ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Mathematical models ; Mechanics ; Metals. Metallurgy ; Microstructure ; Nickel ; Ni–YSZ cermet ; Particulate composites ; Phases ; Powder metallurgy. Composite materials ; Production techniques ; Sintered metals and alloys. Pseudo alloys. Cermets ; SOEC ; Specific surface</subject><ispartof>Journal of power sources, 2014-06, Vol.256 (256), p.394-403</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</citedby><cites>FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</cites><orcidid>0000-0001-6480-003X ; 0000-0003-2846-3720 ; 0000-0002-9808-2897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28250691$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01563085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Usseglio-Viretta, F.</creatorcontrib><creatorcontrib>Laurencin, J.</creatorcontrib><creatorcontrib>Delette, G.</creatorcontrib><creatorcontrib>Villanova, J.</creatorcontrib><creatorcontrib>Cloetens, P.</creatorcontrib><creatorcontrib>Leguillon, D.</creatorcontrib><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><title>Journal of power sources</title><description>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer. •Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</description><subject>Activation energy</subject><subject>Applied sciences</subject><subject>Density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Ni–YSZ cermet</subject><subject>Particulate composites</subject><subject>Phases</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintered metals and alloys. Pseudo alloys. Cermets</subject><subject>SOEC</subject><subject>Specific surface</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSMEEkPhFZA3SLBI8E8cOzuqqlCkEQgBC9hYN86NxiNPnNrOVGXFO_CGPAkJU7plZdn-7jlX5xTFc0YrRlnzel_tp3CTwhwrTlldUVbRtn5QbJhWouRKyofFhgqlS6WkeFw8SWlPKWVM0U1x_WmGMbsM2R2RHJyNIeU42zxHJHYHEWzG6H4s_2EkYSBAPrjfP399-_yddK70cIuR2DBPHnty4_KOJHeYPeTlih5tjqFHMgUP0aW_Ik-LRwP4hM_uzrPi69vLLxdX5fbju_cX59vS1q3OJVNc1u2A2PWyFW3T68FypgboleadFHUjdYMtx65Wg7bd0DFtbSMsCLC60-KseHXS3YE3U3QHiLcmgDNX51uzvlEmG0G1PLKFfXlipxiuZ0zZHFyy6D2MGOZkWKOY1JoLuqDNCV2TShGHe21GzdqH2Zt_fZi1j8XHLH0sgy_uPCBZ8EOE0bp0P801l7Rp113enDhcwjk6jCZZh6PF3sUlT9MH9z-rP-YIqFg</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Usseglio-Viretta, F.</creator><creator>Laurencin, J.</creator><creator>Delette, G.</creator><creator>Villanova, J.</creator><creator>Cloetens, P.</creator><creator>Leguillon, D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6480-003X</orcidid><orcidid>https://orcid.org/0000-0003-2846-3720</orcidid><orcidid>https://orcid.org/0000-0002-9808-2897</orcidid></search><sort><creationdate>20140615</creationdate><title>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</title><author>Usseglio-Viretta, F. ; Laurencin, J. ; Delette, G. ; Villanova, J. ; Cloetens, P. ; Leguillon, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Applied sciences</topic><topic>Density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Ni–YSZ cermet</topic><topic>Particulate composites</topic><topic>Phases</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintered metals and alloys. Pseudo alloys. Cermets</topic><topic>SOEC</topic><topic>Specific surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usseglio-Viretta, F.</creatorcontrib><creatorcontrib>Laurencin, J.</creatorcontrib><creatorcontrib>Delette, G.</creatorcontrib><creatorcontrib>Villanova, J.</creatorcontrib><creatorcontrib>Cloetens, P.</creatorcontrib><creatorcontrib>Leguillon, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usseglio-Viretta, F.</au><au>Laurencin, J.</au><au>Delette, G.</au><au>Villanova, J.</au><au>Cloetens, P.</au><au>Leguillon, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation</atitle><jtitle>Journal of power sources</jtitle><date>2014-06-15</date><risdate>2014</risdate><volume>256</volume><issue>256</issue><spage>394</spage><epage>403</epage><pages>394-403</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Microstructure of a cermet Ni–YSZ bi-layer is analysed on the basis of three dimensional reconstructions obtained on both functional layer and cell support. Microstructural parameters of gas, ionic and electronic phases are determined in terms of phase connectivity, mean particles diameter, particles size distribution, specific surface area, tortuosity factor and density of TPBls. Microstructural properties are introduced in an SOEC cathode micro model that takes into account the specific configuration of the Ni–YSZ composite bi-layer. Simulations show that the extent of the electrochemical reaction in the support is very limited. Moreover, it is found that electrode apparent activation energy is a combination of effective ionic conduction and charge transfer in the active functional layer. •Microstructure of a bi-layer Ni–YSZ cermet is analysed from 3D reconstructions.•Functional layer and substrate are quantified with statistically representative volumes.•Microstructure properties of all phases are determined for the Ni–YSZ bi-layer.•Extent of the electrochemical reaction in the support is discussed.•Electrode activation energy is computed as function of microstructure characteristics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.01.094</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6480-003X</orcidid><orcidid>https://orcid.org/0000-0003-2846-3720</orcidid><orcidid>https://orcid.org/0000-0002-9808-2897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-06, Vol.256 (256), p.394-403
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_01563085v1
source ScienceDirect Freedom Collection
subjects Activation energy
Applied sciences
Density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrode polarization
Electrodes
Energy
Energy. Thermal use of fuels
Engineering Sciences
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Mathematical models
Mechanics
Metals. Metallurgy
Microstructure
Nickel
Ni–YSZ cermet
Particulate composites
Phases
Powder metallurgy. Composite materials
Production techniques
Sintered metals and alloys. Pseudo alloys. Cermets
SOEC
Specific surface
title Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20microstructure%20characterization%20of%20a%20Ni%E2%80%93YSZ%20bi-layer%20coupled%20with%20simulated%20electrode%20polarisation&rft.jtitle=Journal%20of%20power%20sources&rft.au=Usseglio-Viretta,%20F.&rft.date=2014-06-15&rft.volume=256&rft.issue=256&rft.spage=394&rft.epage=403&rft.pages=394-403&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.01.094&rft_dat=%3Cproquest_hal_p%3E1671588230%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-172549feebd59396d8fc217fad782b5346586e92eb47f8cbfb18cc63ca3ac8b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671588230&rft_id=info:pmid/&rfr_iscdi=true