Loading…

Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production

The application of systematic methodologies for the optimal design of integrated processes has seen increased interest in literature, namely for bioprocesses. The development and application of such a methodology to ethanol and power production from sugarcane and leaves, in a combined distillery and...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2016-12, Vol.117, p.540-549
Main Authors: Bechara, Rami, Gomez, Adrien, Saint-Antonin, Valérie, Schweitzer, Jean-Marc, Maréchal, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933
cites cdi_FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933
container_end_page 549
container_issue
container_start_page 540
container_title Energy (Oxford)
container_volume 117
creator Bechara, Rami
Gomez, Adrien
Saint-Antonin, Valérie
Schweitzer, Jean-Marc
Maréchal, François
description The application of systematic methodologies for the optimal design of integrated processes has seen increased interest in literature, namely for bioprocesses. The development and application of such a methodology to ethanol and power production from sugarcane and leaves, in a combined distillery and cogeneration plant is investigated in this article. The methodology breaks down as follows: process simulation, heat integration and thermo-economic evaluation, bi-objective multi-variable evolutionary optimization, and process selection. The objective functions are exergy efficiency and capital cost, whereas the selection criterion is the maximization of the Net Present Value (NPV). This choice was motivated by the variation in process related market parameters and their impact on profitability. Optimization generated 31 optimal trade-off solutions with better results than literature. Exergy efficiency ranged between 37.6% and 41.7% and capital costs between 155 M$ and 210 M$. Process selection led to a single configuration maximizing NPV for four economic scenarios. The configuration's exergy efficiency and capital costs were equal to 40.63% and 163 M$. This point presented an optimal compromise between heat integration and capital costs. This article provides a breakthrough in the application of this methodology, to the investigated process specifically. •Methodology for optimal design of sugarcane to ethanol and power plant.•Process simulation, heat integration and thermo-economic evaluation model.•Bi-objective multi-variable evolutionary optimization and analysis of results.•NPV maximization for selecting point for different economic scenarios.•Analysis and characterization of optimal point.
doi_str_mv 10.1016/j.energy.2016.07.018
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01564954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544216309422</els_id><sourcerecordid>1932062408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933</originalsourceid><addsrcrecordid>eNp9kUGPFCEQhYnRxHH1H3gg8eShW6ChoS8mm426JmO86JkwUPQwaWEEZs1c_eXS28ajpwrFV69e5SH0mpKeEjq-O_UQIc_XnrVXT2RPqHqCdlTJoRulEk_Rjgwj6QTn7Dl6UcqJECLUNO3Q7y9Qj8mlJc1X7FPG9Qg4nWv4YRbsoIQ54uSxiTjECnM2FRwul9lkayJgF0oNywL52hCHbZpXJ6aGFPE5JwulPKq2JSam5RE6p1-Q1193sSv4Ej3zZinw6m-9Qd8_fvh2d9_tv376fHe77yxnY-2YGr1lzByIkUJJ6sBKd2BMUqmIsergmRLSciUGJry34-QUF34SMBEP0zDcoLeb7tEs-pzbhfmqkwn6_nav1x6hYuST4A-0sW82ttn8eYFS9Sldcmz2NJ0GRkbGiWoU3yibUykZ_D9ZSvSajD7pLRm9JqOJbDvWsffbGLRrHwJkXWyAaMGFDLZql8L_Bf4AVuebGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932062408</pqid></control><display><type>article</type><title>Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production</title><source>Elsevier</source><creator>Bechara, Rami ; Gomez, Adrien ; Saint-Antonin, Valérie ; Schweitzer, Jean-Marc ; Maréchal, François</creator><creatorcontrib>Bechara, Rami ; Gomez, Adrien ; Saint-Antonin, Valérie ; Schweitzer, Jean-Marc ; Maréchal, François</creatorcontrib><description>The application of systematic methodologies for the optimal design of integrated processes has seen increased interest in literature, namely for bioprocesses. The development and application of such a methodology to ethanol and power production from sugarcane and leaves, in a combined distillery and cogeneration plant is investigated in this article. The methodology breaks down as follows: process simulation, heat integration and thermo-economic evaluation, bi-objective multi-variable evolutionary optimization, and process selection. The objective functions are exergy efficiency and capital cost, whereas the selection criterion is the maximization of the Net Present Value (NPV). This choice was motivated by the variation in process related market parameters and their impact on profitability. Optimization generated 31 optimal trade-off solutions with better results than literature. Exergy efficiency ranged between 37.6% and 41.7% and capital costs between 155 M$ and 210 M$. Process selection led to a single configuration maximizing NPV for four economic scenarios. The configuration's exergy efficiency and capital costs were equal to 40.63% and 163 M$. This point presented an optimal compromise between heat integration and capital costs. This article provides a breakthrough in the application of this methodology, to the investigated process specifically. •Methodology for optimal design of sugarcane to ethanol and power plant.•Process simulation, heat integration and thermo-economic evaluation model.•Bi-objective multi-variable evolutionary optimization and analysis of results.•NPV maximization for selecting point for different economic scenarios.•Analysis and characterization of optimal point.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2016.07.018</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Capital costs ; Chemical Sciences ; Cogeneration ; Design optimization ; Distilleries ; Economics ; Efficiency ; Ethanol ; Evolutionary bi-objective optimization ; Exergy ; Heat integration ; Integration ; Leaves ; Maximization ; Methodology ; Optimization ; Plants ; Process parameters ; Process selection ; Profitability ; Profitability maximization ; Simulation ; Sugarcane ; Sugarcane distillery and cogeneration ; Thermo-economic evaluation ; Thermodynamics</subject><ispartof>Energy (Oxford), 2016-12, Vol.117, p.540-549</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 15, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933</citedby><cites>FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933</cites><orcidid>0000-0003-4824-5130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-01564954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bechara, Rami</creatorcontrib><creatorcontrib>Gomez, Adrien</creatorcontrib><creatorcontrib>Saint-Antonin, Valérie</creatorcontrib><creatorcontrib>Schweitzer, Jean-Marc</creatorcontrib><creatorcontrib>Maréchal, François</creatorcontrib><title>Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production</title><title>Energy (Oxford)</title><description>The application of systematic methodologies for the optimal design of integrated processes has seen increased interest in literature, namely for bioprocesses. The development and application of such a methodology to ethanol and power production from sugarcane and leaves, in a combined distillery and cogeneration plant is investigated in this article. The methodology breaks down as follows: process simulation, heat integration and thermo-economic evaluation, bi-objective multi-variable evolutionary optimization, and process selection. The objective functions are exergy efficiency and capital cost, whereas the selection criterion is the maximization of the Net Present Value (NPV). This choice was motivated by the variation in process related market parameters and their impact on profitability. Optimization generated 31 optimal trade-off solutions with better results than literature. Exergy efficiency ranged between 37.6% and 41.7% and capital costs between 155 M$ and 210 M$. Process selection led to a single configuration maximizing NPV for four economic scenarios. The configuration's exergy efficiency and capital costs were equal to 40.63% and 163 M$. This point presented an optimal compromise between heat integration and capital costs. This article provides a breakthrough in the application of this methodology, to the investigated process specifically. •Methodology for optimal design of sugarcane to ethanol and power plant.•Process simulation, heat integration and thermo-economic evaluation model.•Bi-objective multi-variable evolutionary optimization and analysis of results.•NPV maximization for selecting point for different economic scenarios.•Analysis and characterization of optimal point.</description><subject>Capital costs</subject><subject>Chemical Sciences</subject><subject>Cogeneration</subject><subject>Design optimization</subject><subject>Distilleries</subject><subject>Economics</subject><subject>Efficiency</subject><subject>Ethanol</subject><subject>Evolutionary bi-objective optimization</subject><subject>Exergy</subject><subject>Heat integration</subject><subject>Integration</subject><subject>Leaves</subject><subject>Maximization</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Plants</subject><subject>Process parameters</subject><subject>Process selection</subject><subject>Profitability</subject><subject>Profitability maximization</subject><subject>Simulation</subject><subject>Sugarcane</subject><subject>Sugarcane distillery and cogeneration</subject><subject>Thermo-economic evaluation</subject><subject>Thermodynamics</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUGPFCEQhYnRxHH1H3gg8eShW6ChoS8mm426JmO86JkwUPQwaWEEZs1c_eXS28ajpwrFV69e5SH0mpKeEjq-O_UQIc_XnrVXT2RPqHqCdlTJoRulEk_Rjgwj6QTn7Dl6UcqJECLUNO3Q7y9Qj8mlJc1X7FPG9Qg4nWv4YRbsoIQ54uSxiTjECnM2FRwul9lkayJgF0oNywL52hCHbZpXJ6aGFPE5JwulPKq2JSam5RE6p1-Q1193sSv4Ej3zZinw6m-9Qd8_fvh2d9_tv376fHe77yxnY-2YGr1lzByIkUJJ6sBKd2BMUqmIsergmRLSciUGJry34-QUF34SMBEP0zDcoLeb7tEs-pzbhfmqkwn6_nav1x6hYuST4A-0sW82ttn8eYFS9Sldcmz2NJ0GRkbGiWoU3yibUykZ_D9ZSvSajD7pLRm9JqOJbDvWsffbGLRrHwJkXWyAaMGFDLZql8L_Bf4AVuebGg</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Bechara, Rami</creator><creator>Gomez, Adrien</creator><creator>Saint-Antonin, Valérie</creator><creator>Schweitzer, Jean-Marc</creator><creator>Maréchal, François</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4824-5130</orcidid></search><sort><creationdate>20161215</creationdate><title>Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production</title><author>Bechara, Rami ; Gomez, Adrien ; Saint-Antonin, Valérie ; Schweitzer, Jean-Marc ; Maréchal, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capital costs</topic><topic>Chemical Sciences</topic><topic>Cogeneration</topic><topic>Design optimization</topic><topic>Distilleries</topic><topic>Economics</topic><topic>Efficiency</topic><topic>Ethanol</topic><topic>Evolutionary bi-objective optimization</topic><topic>Exergy</topic><topic>Heat integration</topic><topic>Integration</topic><topic>Leaves</topic><topic>Maximization</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Plants</topic><topic>Process parameters</topic><topic>Process selection</topic><topic>Profitability</topic><topic>Profitability maximization</topic><topic>Simulation</topic><topic>Sugarcane</topic><topic>Sugarcane distillery and cogeneration</topic><topic>Thermo-economic evaluation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bechara, Rami</creatorcontrib><creatorcontrib>Gomez, Adrien</creatorcontrib><creatorcontrib>Saint-Antonin, Valérie</creatorcontrib><creatorcontrib>Schweitzer, Jean-Marc</creatorcontrib><creatorcontrib>Maréchal, François</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bechara, Rami</au><au>Gomez, Adrien</au><au>Saint-Antonin, Valérie</au><au>Schweitzer, Jean-Marc</au><au>Maréchal, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production</atitle><jtitle>Energy (Oxford)</jtitle><date>2016-12-15</date><risdate>2016</risdate><volume>117</volume><spage>540</spage><epage>549</epage><pages>540-549</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The application of systematic methodologies for the optimal design of integrated processes has seen increased interest in literature, namely for bioprocesses. The development and application of such a methodology to ethanol and power production from sugarcane and leaves, in a combined distillery and cogeneration plant is investigated in this article. The methodology breaks down as follows: process simulation, heat integration and thermo-economic evaluation, bi-objective multi-variable evolutionary optimization, and process selection. The objective functions are exergy efficiency and capital cost, whereas the selection criterion is the maximization of the Net Present Value (NPV). This choice was motivated by the variation in process related market parameters and their impact on profitability. Optimization generated 31 optimal trade-off solutions with better results than literature. Exergy efficiency ranged between 37.6% and 41.7% and capital costs between 155 M$ and 210 M$. Process selection led to a single configuration maximizing NPV for four economic scenarios. The configuration's exergy efficiency and capital costs were equal to 40.63% and 163 M$. This point presented an optimal compromise between heat integration and capital costs. This article provides a breakthrough in the application of this methodology, to the investigated process specifically. •Methodology for optimal design of sugarcane to ethanol and power plant.•Process simulation, heat integration and thermo-economic evaluation model.•Bi-objective multi-variable evolutionary optimization and analysis of results.•NPV maximization for selecting point for different economic scenarios.•Analysis and characterization of optimal point.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2016.07.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4824-5130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2016-12, Vol.117, p.540-549
issn 0360-5442
1873-6785
language eng
recordid cdi_hal_primary_oai_HAL_hal_01564954v1
source Elsevier
subjects Capital costs
Chemical Sciences
Cogeneration
Design optimization
Distilleries
Economics
Efficiency
Ethanol
Evolutionary bi-objective optimization
Exergy
Heat integration
Integration
Leaves
Maximization
Methodology
Optimization
Plants
Process parameters
Process selection
Profitability
Profitability maximization
Simulation
Sugarcane
Sugarcane distillery and cogeneration
Thermo-economic evaluation
Thermodynamics
title Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20for%20the%20optimal%20design%20of%20an%20integrated%20sugarcane%20distillery%20and%20cogeneration%20process%20for%20ethanol%20and%20power%20production&rft.jtitle=Energy%20(Oxford)&rft.au=Bechara,%20Rami&rft.date=2016-12-15&rft.volume=117&rft.spage=540&rft.epage=549&rft.pages=540-549&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2016.07.018&rft_dat=%3Cproquest_hal_p%3E1932062408%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-286fc22ab0a75871dec7db2271780ac8bf2857c485325ffc69d845f95e90fe933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932062408&rft_id=info:pmid/&rfr_iscdi=true