Loading…

Patient-specific modeling for left ventricular mechanics using data-driven boundary energies

Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2017-02, Vol.314, p.269-295
Main Authors: Asner, L., Hadjicharalambous, M., Chabiniok, R., Peressutti, D., Sammut, E., Wong, J., Carr-White, G., Razavi, R., King, A.P., Smith, N., Lee, J., Nordsletten, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53
cites cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53
container_end_page 295
container_issue
container_start_page 269
container_title Computer methods in applied mechanics and engineering
container_volume 314
creator Asner, L.
Hadjicharalambous, M.
Chabiniok, R.
Peressutti, D.
Sammut, E.
Wong, J.
Carr-White, G.
Razavi, R.
King, A.P.
Smith, N.
Lee, J.
Nordsletten, D.
description Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function. •Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.
doi_str_mv 10.1016/j.cma.2016.08.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01576770v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516308672</els_id><sourcerecordid>1920788107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AHcFVy5aX9J2kuJqGPyCAV3oTghp8jqT0o8xaQf896ZUXJpNQnLu4-YQck0hoUBXd3WiW5WwcExAJADshCyo4EXMaCpOyQIgy2MuWH5OLryvISxB2YJ8vqnBYjfE_oDaVlZHbW-wsd0uqnoXNVgN0TG8O6vHRrmoRb1XndU-Gv0EGTWo2DgbmKjsx84o9x1hh25n0V-Ss0o1Hq9-9yX5eHx43zzH29enl816G-sM2BAzUzHIQjcsDdUcQBcogJoyrSpjUmpYaZjWqaHCoDYqK5Cnqsz4Ks1AlXm6JLfz3L1q5MHZNpSQvbLyeb2V0x3QnK84hyMN7M3MHlz_NaIfZN2Prgv1JC0YcCEo8EDRmdKu995h9TeWgpyEy1oG4XISLkHIIDxk7ucMhq8eLTrpdVCr0ViHepCmt_-kfwCmYYmG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920788107</pqid></control><display><type>article</type><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><source>Elsevier</source><creator>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</creator><creatorcontrib>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</creatorcontrib><description>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function. •Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.08.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomechanics ; Boundary conditions ; Cardiac mechanic ; Deformation ; Diagnosis ; Engineering Sciences ; Finite element method ; Heart ; Heart function ; Lagrange multiplier ; Mathematics ; Mechanics ; Medical imaging ; Model accuracy ; Modelling ; Numerical Analysis ; Patient-specific boundary conditions ; Patient-specific modeling ; Physiology ; Robustness</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-02, Vol.314, p.269-295</ispartof><rights>2016 The Authors</rights><rights>Copyright Elsevier BV Feb 1, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</citedby><cites>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</cites><orcidid>0000-0003-1212-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01576770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asner, L.</creatorcontrib><creatorcontrib>Hadjicharalambous, M.</creatorcontrib><creatorcontrib>Chabiniok, R.</creatorcontrib><creatorcontrib>Peressutti, D.</creatorcontrib><creatorcontrib>Sammut, E.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Carr-White, G.</creatorcontrib><creatorcontrib>Razavi, R.</creatorcontrib><creatorcontrib>King, A.P.</creatorcontrib><creatorcontrib>Smith, N.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Nordsletten, D.</creatorcontrib><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><title>Computer methods in applied mechanics and engineering</title><description>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function. •Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</description><subject>Biomechanics</subject><subject>Boundary conditions</subject><subject>Cardiac mechanic</subject><subject>Deformation</subject><subject>Diagnosis</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Heart</subject><subject>Heart function</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Numerical Analysis</subject><subject>Patient-specific boundary conditions</subject><subject>Patient-specific modeling</subject><subject>Physiology</subject><subject>Robustness</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AHcFVy5aX9J2kuJqGPyCAV3oTghp8jqT0o8xaQf896ZUXJpNQnLu4-YQck0hoUBXd3WiW5WwcExAJADshCyo4EXMaCpOyQIgy2MuWH5OLryvISxB2YJ8vqnBYjfE_oDaVlZHbW-wsd0uqnoXNVgN0TG8O6vHRrmoRb1XndU-Gv0EGTWo2DgbmKjsx84o9x1hh25n0V-Ss0o1Hq9-9yX5eHx43zzH29enl816G-sM2BAzUzHIQjcsDdUcQBcogJoyrSpjUmpYaZjWqaHCoDYqK5Cnqsz4Ks1AlXm6JLfz3L1q5MHZNpSQvbLyeb2V0x3QnK84hyMN7M3MHlz_NaIfZN2Prgv1JC0YcCEo8EDRmdKu995h9TeWgpyEy1oG4XISLkHIIDxk7ucMhq8eLTrpdVCr0ViHepCmt_-kfwCmYYmG</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Asner, L.</creator><creator>Hadjicharalambous, M.</creator><creator>Chabiniok, R.</creator><creator>Peressutti, D.</creator><creator>Sammut, E.</creator><creator>Wong, J.</creator><creator>Carr-White, G.</creator><creator>Razavi, R.</creator><creator>King, A.P.</creator><creator>Smith, N.</creator><creator>Lee, J.</creator><creator>Nordsletten, D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1212-5882</orcidid></search><sort><creationdate>20170201</creationdate><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><author>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanics</topic><topic>Boundary conditions</topic><topic>Cardiac mechanic</topic><topic>Deformation</topic><topic>Diagnosis</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Heart</topic><topic>Heart function</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Numerical Analysis</topic><topic>Patient-specific boundary conditions</topic><topic>Patient-specific modeling</topic><topic>Physiology</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asner, L.</creatorcontrib><creatorcontrib>Hadjicharalambous, M.</creatorcontrib><creatorcontrib>Chabiniok, R.</creatorcontrib><creatorcontrib>Peressutti, D.</creatorcontrib><creatorcontrib>Sammut, E.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Carr-White, G.</creatorcontrib><creatorcontrib>Razavi, R.</creatorcontrib><creatorcontrib>King, A.P.</creatorcontrib><creatorcontrib>Smith, N.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Nordsletten, D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asner, L.</au><au>Hadjicharalambous, M.</au><au>Chabiniok, R.</au><au>Peressutti, D.</au><au>Sammut, E.</au><au>Wong, J.</au><au>Carr-White, G.</au><au>Razavi, R.</au><au>King, A.P.</au><au>Smith, N.</au><au>Lee, J.</au><au>Nordsletten, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>314</volume><spage>269</spage><epage>295</epage><pages>269-295</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function. •Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.08.002</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1212-5882</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2017-02, Vol.314, p.269-295
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01576770v1
source Elsevier
subjects Biomechanics
Boundary conditions
Cardiac mechanic
Deformation
Diagnosis
Engineering Sciences
Finite element method
Heart
Heart function
Lagrange multiplier
Mathematics
Mechanics
Medical imaging
Model accuracy
Modelling
Numerical Analysis
Patient-specific boundary conditions
Patient-specific modeling
Physiology
Robustness
title Patient-specific modeling for left ventricular mechanics using data-driven boundary energies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-specific%20modeling%20for%20left%20ventricular%20mechanics%20using%20data-driven%20boundary%20energies&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Asner,%20L.&rft.date=2017-02-01&rft.volume=314&rft.spage=269&rft.epage=295&rft.pages=269-295&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.08.002&rft_dat=%3Cproquest_hal_p%3E1920788107%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920788107&rft_id=info:pmid/&rfr_iscdi=true