Loading…
Patient-specific modeling for left ventricular mechanics using data-driven boundary energies
Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2017-02, Vol.314, p.269-295 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53 |
container_end_page | 295 |
container_issue | |
container_start_page | 269 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 314 |
creator | Asner, L. Hadjicharalambous, M. Chabiniok, R. Peressutti, D. Sammut, E. Wong, J. Carr-White, G. Razavi, R. King, A.P. Smith, N. Lee, J. Nordsletten, D. |
description | Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function.
•Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data. |
doi_str_mv | 10.1016/j.cma.2016.08.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01576770v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782516308672</els_id><sourcerecordid>1920788107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AHcFVy5aX9J2kuJqGPyCAV3oTghp8jqT0o8xaQf896ZUXJpNQnLu4-YQck0hoUBXd3WiW5WwcExAJADshCyo4EXMaCpOyQIgy2MuWH5OLryvISxB2YJ8vqnBYjfE_oDaVlZHbW-wsd0uqnoXNVgN0TG8O6vHRrmoRb1XndU-Gv0EGTWo2DgbmKjsx84o9x1hh25n0V-Ss0o1Hq9-9yX5eHx43zzH29enl816G-sM2BAzUzHIQjcsDdUcQBcogJoyrSpjUmpYaZjWqaHCoDYqK5Cnqsz4Ks1AlXm6JLfz3L1q5MHZNpSQvbLyeb2V0x3QnK84hyMN7M3MHlz_NaIfZN2Prgv1JC0YcCEo8EDRmdKu995h9TeWgpyEy1oG4XISLkHIIDxk7ucMhq8eLTrpdVCr0ViHepCmt_-kfwCmYYmG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920788107</pqid></control><display><type>article</type><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><source>Elsevier</source><creator>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</creator><creatorcontrib>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</creatorcontrib><description>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function.
•Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.08.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomechanics ; Boundary conditions ; Cardiac mechanic ; Deformation ; Diagnosis ; Engineering Sciences ; Finite element method ; Heart ; Heart function ; Lagrange multiplier ; Mathematics ; Mechanics ; Medical imaging ; Model accuracy ; Modelling ; Numerical Analysis ; Patient-specific boundary conditions ; Patient-specific modeling ; Physiology ; Robustness</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-02, Vol.314, p.269-295</ispartof><rights>2016 The Authors</rights><rights>Copyright Elsevier BV Feb 1, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</citedby><cites>FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</cites><orcidid>0000-0003-1212-5882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01576770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asner, L.</creatorcontrib><creatorcontrib>Hadjicharalambous, M.</creatorcontrib><creatorcontrib>Chabiniok, R.</creatorcontrib><creatorcontrib>Peressutti, D.</creatorcontrib><creatorcontrib>Sammut, E.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Carr-White, G.</creatorcontrib><creatorcontrib>Razavi, R.</creatorcontrib><creatorcontrib>King, A.P.</creatorcontrib><creatorcontrib>Smith, N.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Nordsletten, D.</creatorcontrib><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><title>Computer methods in applied mechanics and engineering</title><description>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function.
•Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</description><subject>Biomechanics</subject><subject>Boundary conditions</subject><subject>Cardiac mechanic</subject><subject>Deformation</subject><subject>Diagnosis</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Heart</subject><subject>Heart function</subject><subject>Lagrange multiplier</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Numerical Analysis</subject><subject>Patient-specific boundary conditions</subject><subject>Patient-specific modeling</subject><subject>Physiology</subject><subject>Robustness</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AHcFVy5aX9J2kuJqGPyCAV3oTghp8jqT0o8xaQf896ZUXJpNQnLu4-YQck0hoUBXd3WiW5WwcExAJADshCyo4EXMaCpOyQIgy2MuWH5OLryvISxB2YJ8vqnBYjfE_oDaVlZHbW-wsd0uqnoXNVgN0TG8O6vHRrmoRb1XndU-Gv0EGTWo2DgbmKjsx84o9x1hh25n0V-Ss0o1Hq9-9yX5eHx43zzH29enl816G-sM2BAzUzHIQjcsDdUcQBcogJoyrSpjUmpYaZjWqaHCoDYqK5Cnqsz4Ks1AlXm6JLfz3L1q5MHZNpSQvbLyeb2V0x3QnK84hyMN7M3MHlz_NaIfZN2Prgv1JC0YcCEo8EDRmdKu995h9TeWgpyEy1oG4XISLkHIIDxk7ucMhq8eLTrpdVCr0ViHepCmt_-kfwCmYYmG</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Asner, L.</creator><creator>Hadjicharalambous, M.</creator><creator>Chabiniok, R.</creator><creator>Peressutti, D.</creator><creator>Sammut, E.</creator><creator>Wong, J.</creator><creator>Carr-White, G.</creator><creator>Razavi, R.</creator><creator>King, A.P.</creator><creator>Smith, N.</creator><creator>Lee, J.</creator><creator>Nordsletten, D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1212-5882</orcidid></search><sort><creationdate>20170201</creationdate><title>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</title><author>Asner, L. ; Hadjicharalambous, M. ; Chabiniok, R. ; Peressutti, D. ; Sammut, E. ; Wong, J. ; Carr-White, G. ; Razavi, R. ; King, A.P. ; Smith, N. ; Lee, J. ; Nordsletten, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanics</topic><topic>Boundary conditions</topic><topic>Cardiac mechanic</topic><topic>Deformation</topic><topic>Diagnosis</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Heart</topic><topic>Heart function</topic><topic>Lagrange multiplier</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Numerical Analysis</topic><topic>Patient-specific boundary conditions</topic><topic>Patient-specific modeling</topic><topic>Physiology</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asner, L.</creatorcontrib><creatorcontrib>Hadjicharalambous, M.</creatorcontrib><creatorcontrib>Chabiniok, R.</creatorcontrib><creatorcontrib>Peressutti, D.</creatorcontrib><creatorcontrib>Sammut, E.</creatorcontrib><creatorcontrib>Wong, J.</creatorcontrib><creatorcontrib>Carr-White, G.</creatorcontrib><creatorcontrib>Razavi, R.</creatorcontrib><creatorcontrib>King, A.P.</creatorcontrib><creatorcontrib>Smith, N.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Nordsletten, D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asner, L.</au><au>Hadjicharalambous, M.</au><au>Chabiniok, R.</au><au>Peressutti, D.</au><au>Sammut, E.</au><au>Wong, J.</au><au>Carr-White, G.</au><au>Razavi, R.</au><au>King, A.P.</au><au>Smith, N.</au><au>Lee, J.</au><au>Nordsletten, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-specific modeling for left ventricular mechanics using data-driven boundary energies</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>314</volume><spage>269</spage><epage>295</epage><pages>269-295</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Supported by the wide range of available medical data available, cardiac biomechanical modeling has exhibited significant potential to improve our understanding of heart function and to assisting in patient diagnosis and treatment. A critical step towards the development of accurate patient-specific models is the deployment of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which aim to balance the accurate use of data with physiological boundary forces and model outcomes through the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a varied range of cardiac function.
•Development of boundary conditions using patient-specific data.•A systematic analysis of cardiac mechanics boundary conditions.•Demonstration of efficacy for 6 patient-specific models.•Novel quantitative comparison with non-invasive imaging data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.08.002</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1212-5882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2017-02, Vol.314, p.269-295 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01576770v1 |
source | Elsevier |
subjects | Biomechanics Boundary conditions Cardiac mechanic Deformation Diagnosis Engineering Sciences Finite element method Heart Heart function Lagrange multiplier Mathematics Mechanics Medical imaging Model accuracy Modelling Numerical Analysis Patient-specific boundary conditions Patient-specific modeling Physiology Robustness |
title | Patient-specific modeling for left ventricular mechanics using data-driven boundary energies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-specific%20modeling%20for%20left%20ventricular%20mechanics%20using%20data-driven%20boundary%20energies&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Asner,%20L.&rft.date=2017-02-01&rft.volume=314&rft.spage=269&rft.epage=295&rft.pages=269-295&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.08.002&rft_dat=%3Cproquest_hal_p%3E1920788107%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2df204825ebd1c700c9e801db3ffdd31d2bd2cc3d18decda49e73ab476340ab53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920788107&rft_id=info:pmid/&rfr_iscdi=true |