Loading…

New Polymeric Materials with Interferential Optical Properties

Nature provides a wide pallet of colors but also a wide number of fascinating optical phenomena such as nacre or interferential effects, which can be observed in insect wings and shellfish. The origin of such effects is attributed to the presence of highly ordered arrangements in Nature's mater...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular chemistry and physics 2007-07, Vol.208 (13), p.1469-1479
Main Authors: Ghannam, Leïla, Garay, Hélène, François, Jeanne, Billon, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nature provides a wide pallet of colors but also a wide number of fascinating optical phenomena such as nacre or interferential effects, which can be observed in insect wings and shellfish. The origin of such effects is attributed to the presence of highly ordered arrangements in Nature's materials. The aim of this paper is to focus some new approaches and advances for creating interferential optical phenomena as observed in nature by tuning or modeling the polymer architectures or organization. A relatively simple method is described to prepare organic/inorganic hybrid pigments constituted of mica platelets and adsorbed polymer layers. It is shown that the color of mica is changed upon polymer adsorption, and when one of the copolymer sequences includes a dye, its color is influenced by the chemical properties of the mica surface. Moreover, a new facile route is presented to obtain highly ordered surfaces using ionomer macromolecular designs synthesized in one step by controlled radical polymerization. The preparation of films with very regular pore size and spatial organization is successfully realized by using ionomer solutions. An original property of these films with an iridescent color obtained by light diffraction as a result of the optical interferences of sunlight with the periodic honeycomb structures is presented. All these new materials based on polymeric controlled structures can reproduce nature by creating an optical interferential and iridescent material, which offers new fascinating applications as original bio‐mimetic materials on inorganic surfaces.
ISSN:1022-1352
1521-3935
DOI:10.1002/macp.200700069