Loading…

Synthesis and characterization of carboxymethylcelluloses from non-wood pulps II. Rheological behavior of CMC in aqueous solution

This paper concerns the rheological behavior of carboxymethylcelulloses(CMC) derived after one and two successive steps from different non-woodbleached cellulose pulps. CMC rheological characterization was achieved in0.1M NaCl solution, as a function of polymer concentration. Theevidence of a critic...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2002-09, Vol.9 (3-4), p.327-335
Main Authors: Barba, Claudia, Montané, Daniel, Farriol, Xavier, Desbrières, Jacques, Rinaudo, Marguerite
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper concerns the rheological behavior of carboxymethylcelulloses(CMC) derived after one and two successive steps from different non-woodbleached cellulose pulps. CMC rheological characterization was achieved in0.1M NaCl solution, as a function of polymer concentration. Theevidence of a critical concentration (C* < 1 g/L) is discussedfromsteady shear and dynamic experiments. Rheological properties of the CMC werefound to depend on the cellulose source reactivity and on their degree ofsubstitution (DS). Higher molecular weight of initial cellulose was accompaniedby higher apparent intrinsic viscosity of the CMC produced. Depending on theCMCconcentration and on the degree of etherification, the system behaves as asolution or as a gel. In the case of abaca CMC sample, it is shown that afteronly one step of chemical modification and above a polymer concentration of20 g/L, the system behaves as a gel. The gel behavior was studied asafunction of temperature. In the temperature range from 25 to 45°C, the rheological behavior was found to remain almostconstant due to the existence of dispersed swollen aggregates. This unusualcharacteristic represents an advantage for applications such as oil recovery inthe petroleum industry, where viscosity of the recovered fluid should not diminishwith temperature.
ISSN:0969-0239
1572-882X
DOI:10.1023/A:1021136626028