Loading…

Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning

We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2015-01, Vol.6 (12), p.686-6812
Main Authors: Bouleau, E, Saint-Bonnet, P, Mentink-Vigier, F, Takahashi, H, Jacquot, J.-F, Bardet, M, Aussenac, F, Purea, A, Engelke, F, Hediger, S, Lee, D, De Paëpe, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art. The approach relies on the use of dynamic nuclear polarization and demonstrates unprecedented DNP enhancement factors for experiments performed at sample temperatures much lower than 100 K, and can translate into 6 orders of magnitude of experimental time-savings. This leap-forward was made possible thanks to the employment of cryogenic helium as the gas to power magic angle sample spinning (MAS) for dynamic nuclear polarization (DNP) enhanced NMR experiments. These experimental conditions far exceed what is currently possible and allows currently reaching sample temperatures down to 30 K while conducting experiments with improved resolution (thanks to faster spinning frequencies, up to 25 kHz) and highly polarized nuclear spins. The impressive associated gains were used to hyperpolarize the surface of an industrial catalyst as well as to hyperpolarize organic nano-assemblies (self-assembling peptides in our case), for whom structures cannot be solved using diffraction techniques. Sustainable cryogenic helium sample spinning significantly enlarges the realm and possibilities of the MAS-DNP technique and is the route to transform NMR into a versatile but also sensitive atomic-level characterization tool. The cooler the better. We report a strategy to push the limits of solid-state NMR sensitivity far beyond its current state-of-the-art.
ISSN:2041-6520
2041-6539
DOI:10.1039/c5sc02819a