Loading…

Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling

Adaptive optic (AO) systems are now routinely used in ground‐based telescopes to counter the effects of atmospheric turbulence. A deformable mirror (DM) generates a correction wavefront, which is subtracted from the turbulent wavefront using measurements of the residual phase provided by a wavefront...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2011-05, Vol.21 (7), p.768-789
Main Authors: Raynaud, H.-F., Correia, C., Kulcsár, C., Conan, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993
cites cdi_FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993
container_end_page 789
container_issue 7
container_start_page 768
container_title International journal of robust and nonlinear control
container_volume 21
creator Raynaud, H.-F.
Correia, C.
Kulcsár, C.
Conan, J.-M.
description Adaptive optic (AO) systems are now routinely used in ground‐based telescopes to counter the effects of atmospheric turbulence. A deformable mirror (DM) generates a correction wavefront, which is subtracted from the turbulent wavefront using measurements of the residual phase provided by a wavefront sensor (WFS). Minimizing the variance of the residual phase defines a sampled data control problem combining a continuous time minimum‐variance (MV) performance criterion with a discrete‐time controller. For a fairly general class of linear time‐invariant DM and turbulence WFS models, this control problem can be transformed into an equivalent discrete‐time LQ optimization problem involving a set of (discrete‐time) control‐sufficient statistics of the incoming continuous‐time turbulence. This paper shows how to constructively solve this MV problem in the presence of DM's dynamics, starting from continuous‐time models of DM and turbulence. This result is extended to the case of asynchronous DM/WFS sampling. An illustrative application to optimal control of tip‐tilt turbulent modes for the European extremely large telescope in the presence of first‐order DM's dynamics is presented. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.1625
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01590239v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901656382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993</originalsourceid><addsrcrecordid>eNp10Utr3DAQB3BTUsijhXwE3dIenOix0nqOYWkesJtCSUnpRYxluavUlraSvcle-8kjsyW0h55mGP34I2aK4pTRc0Ypv4jenDPF5ZviiFGAknEBB1M_g7ICLg6L45QeKc1vfHZU_F457_qxL7cYHXpjiQl-iKEjoSWYcudD7wx2BBvcDG5rScjFkLRLg-0TeXLDmqAZRhxCJM3OY-aJjL6xMSNv1lPEmAj6Jgf-NUjYbzrnf7wr3rbYJfv-Tz0pvl59ul_clMvP17eLy2VphAJZclbP5qxilKFoWwZUNrya1YoLK6StVd0YbhUy4K0FAy3aCuy8lthKJSWAOCk-7nPX2OlNdD3GnQ7o9M3lUk8zyiTQvK4ty_Zsbzcx_BptGnTvkrFdh97mv2ugTEklKp7lh700MaQUbfsazaieLqLzRfR0kUzLPX1ynd391-kvd4t_vcurfn71GH9qNRdzqR_urvV3gNX96mGpv4kXRc2fOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901656382</pqid></control><display><type>article</type><title>Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling</title><source>Wiley</source><creator>Raynaud, H.-F. ; Correia, C. ; Kulcsár, C. ; Conan, J.-M.</creator><creatorcontrib>Raynaud, H.-F. ; Correia, C. ; Kulcsár, C. ; Conan, J.-M.</creatorcontrib><description>Adaptive optic (AO) systems are now routinely used in ground‐based telescopes to counter the effects of atmospheric turbulence. A deformable mirror (DM) generates a correction wavefront, which is subtracted from the turbulent wavefront using measurements of the residual phase provided by a wavefront sensor (WFS). Minimizing the variance of the residual phase defines a sampled data control problem combining a continuous time minimum‐variance (MV) performance criterion with a discrete‐time controller. For a fairly general class of linear time‐invariant DM and turbulence WFS models, this control problem can be transformed into an equivalent discrete‐time LQ optimization problem involving a set of (discrete‐time) control‐sufficient statistics of the incoming continuous‐time turbulence. This paper shows how to constructively solve this MV problem in the presence of DM's dynamics, starting from continuous‐time models of DM and turbulence. This result is extended to the case of asynchronous DM/WFS sampling. An illustrative application to optimal control of tip‐tilt turbulent modes for the European extremely large telescope in the presence of first‐order DM's dynamics is presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>ISSN: 1099-1239</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.1625</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adaptive optics ; Computational fluid dynamics ; Dynamical systems ; Fluid flow ; LQG control ; minimum-variance control ; Nonlinear dynamics ; Optics ; optimal control ; Physics ; sampled data systems ; Turbulence ; Turbulent flow ; Wave fronts</subject><ispartof>International journal of robust and nonlinear control, 2011-05, Vol.21 (7), p.768-789</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993</citedby><cites>FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993</cites><orcidid>0000-0002-2840-2111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01590239$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raynaud, H.-F.</creatorcontrib><creatorcontrib>Correia, C.</creatorcontrib><creatorcontrib>Kulcsár, C.</creatorcontrib><creatorcontrib>Conan, J.-M.</creatorcontrib><title>Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust Nonlinear Control</addtitle><description>Adaptive optic (AO) systems are now routinely used in ground‐based telescopes to counter the effects of atmospheric turbulence. A deformable mirror (DM) generates a correction wavefront, which is subtracted from the turbulent wavefront using measurements of the residual phase provided by a wavefront sensor (WFS). Minimizing the variance of the residual phase defines a sampled data control problem combining a continuous time minimum‐variance (MV) performance criterion with a discrete‐time controller. For a fairly general class of linear time‐invariant DM and turbulence WFS models, this control problem can be transformed into an equivalent discrete‐time LQ optimization problem involving a set of (discrete‐time) control‐sufficient statistics of the incoming continuous‐time turbulence. This paper shows how to constructively solve this MV problem in the presence of DM's dynamics, starting from continuous‐time models of DM and turbulence. This result is extended to the case of asynchronous DM/WFS sampling. An illustrative application to optimal control of tip‐tilt turbulent modes for the European extremely large telescope in the presence of first‐order DM's dynamics is presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Adaptive optics</subject><subject>Computational fluid dynamics</subject><subject>Dynamical systems</subject><subject>Fluid flow</subject><subject>LQG control</subject><subject>minimum-variance control</subject><subject>Nonlinear dynamics</subject><subject>Optics</subject><subject>optimal control</subject><subject>Physics</subject><subject>sampled data systems</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Wave fronts</subject><issn>1049-8923</issn><issn>1099-1239</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10Utr3DAQB3BTUsijhXwE3dIenOix0nqOYWkesJtCSUnpRYxluavUlraSvcle-8kjsyW0h55mGP34I2aK4pTRc0Ypv4jenDPF5ZviiFGAknEBB1M_g7ICLg6L45QeKc1vfHZU_F457_qxL7cYHXpjiQl-iKEjoSWYcudD7wx2BBvcDG5rScjFkLRLg-0TeXLDmqAZRhxCJM3OY-aJjL6xMSNv1lPEmAj6Jgf-NUjYbzrnf7wr3rbYJfv-Tz0pvl59ul_clMvP17eLy2VphAJZclbP5qxilKFoWwZUNrya1YoLK6StVd0YbhUy4K0FAy3aCuy8lthKJSWAOCk-7nPX2OlNdD3GnQ7o9M3lUk8zyiTQvK4ty_Zsbzcx_BptGnTvkrFdh97mv2ugTEklKp7lh700MaQUbfsazaieLqLzRfR0kUzLPX1ynd391-kvd4t_vcurfn71GH9qNRdzqR_urvV3gNX96mGpv4kXRc2fOQ</recordid><startdate>20110510</startdate><enddate>20110510</enddate><creator>Raynaud, H.-F.</creator><creator>Correia, C.</creator><creator>Kulcsár, C.</creator><creator>Conan, J.-M.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2840-2111</orcidid></search><sort><creationdate>20110510</creationdate><title>Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling</title><author>Raynaud, H.-F. ; Correia, C. ; Kulcsár, C. ; Conan, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive optics</topic><topic>Computational fluid dynamics</topic><topic>Dynamical systems</topic><topic>Fluid flow</topic><topic>LQG control</topic><topic>minimum-variance control</topic><topic>Nonlinear dynamics</topic><topic>Optics</topic><topic>optimal control</topic><topic>Physics</topic><topic>sampled data systems</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raynaud, H.-F.</creatorcontrib><creatorcontrib>Correia, C.</creatorcontrib><creatorcontrib>Kulcsár, C.</creatorcontrib><creatorcontrib>Conan, J.-M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raynaud, H.-F.</au><au>Correia, C.</au><au>Kulcsár, C.</au><au>Conan, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust Nonlinear Control</addtitle><date>2011-05-10</date><risdate>2011</risdate><volume>21</volume><issue>7</issue><spage>768</spage><epage>789</epage><pages>768-789</pages><issn>1049-8923</issn><issn>1099-1239</issn><eissn>1099-1239</eissn><abstract>Adaptive optic (AO) systems are now routinely used in ground‐based telescopes to counter the effects of atmospheric turbulence. A deformable mirror (DM) generates a correction wavefront, which is subtracted from the turbulent wavefront using measurements of the residual phase provided by a wavefront sensor (WFS). Minimizing the variance of the residual phase defines a sampled data control problem combining a continuous time minimum‐variance (MV) performance criterion with a discrete‐time controller. For a fairly general class of linear time‐invariant DM and turbulence WFS models, this control problem can be transformed into an equivalent discrete‐time LQ optimization problem involving a set of (discrete‐time) control‐sufficient statistics of the incoming continuous‐time turbulence. This paper shows how to constructively solve this MV problem in the presence of DM's dynamics, starting from continuous‐time models of DM and turbulence. This result is extended to the case of asynchronous DM/WFS sampling. An illustrative application to optimal control of tip‐tilt turbulent modes for the European extremely large telescope in the presence of first‐order DM's dynamics is presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/rnc.1625</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2840-2111</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2011-05, Vol.21 (7), p.768-789
issn 1049-8923
1099-1239
1099-1239
language eng
recordid cdi_hal_primary_oai_HAL_hal_01590239v1
source Wiley
subjects Adaptive optics
Computational fluid dynamics
Dynamical systems
Fluid flow
LQG control
minimum-variance control
Nonlinear dynamics
Optics
optimal control
Physics
sampled data systems
Turbulence
Turbulent flow
Wave fronts
title Minimum-variance control of astronomical adaptive optic systems with actuator dynamics under synchronous and asynchronous sampling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimum-variance%20control%20of%20astronomical%20adaptive%20optic%20systems%20with%20actuator%20dynamics%20under%20synchronous%20and%20asynchronous%20sampling&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Raynaud,%20H.-F.&rft.date=2011-05-10&rft.volume=21&rft.issue=7&rft.spage=768&rft.epage=789&rft.pages=768-789&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.1625&rft_dat=%3Cproquest_hal_p%3E901656382%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3695-21b4718101a3ff1905d284b623e35eb6bdc2e6a192fe9c9fae89e7b5af5655993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=901656382&rft_id=info:pmid/&rfr_iscdi=true