Loading…
On the validity of localized approximation for an on-axis zeroth-order Bessel beam
Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients o...
Saved in:
Published in: | Journal of quantitative spectroscopy & radiative transfer 2017-07, Vol.195, p.18-25 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83 |
container_end_page | 25 |
container_issue | |
container_start_page | 18 |
container_title | Journal of quantitative spectroscopy & radiative transfer |
container_volume | 195 |
creator | Gouesbet, Gérard Lock, J.A. Ambrosio, L.A. Wang, J.J. |
description | Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.
•The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams. |
doi_str_mv | 10.1016/j.jqsrt.2016.06.039 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01596724v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407316300826</els_id><sourcerecordid>oai_HAL_hal_01596724v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gZdcPew6SfYrBw-1qBUKBdFzyCazNMt2U5OltP31bq14FAaGd3ifYeYl5I5ByoAVD23afsUwpHwUKYwl5BmZsKqUCRM5PycTAM6TDEpxSa5ibAFACFZMyPuyp8MK6VZ3zrphT31DO29GdUBL9WYT_M6t9eB8TxsfqO6p7xO9c5EeMPhhlfhgMdAnjBE7WqNe35CLRncRb3_7Nfl8ef6YzZPF8vVtNl0kRohySCpt87qqa2uBY1ZVIHjWaNZkhUApC1ZaA40BKbkuKltLnlkpCpNrAViLuhLX5P60d6U7tQnjlWGvvHZqPl2o4wxYLouSZ1s2esXJa4KPMWDzBzBQxwhVq34iVMcIFYwl5Eg9nigc39g6DCoah71B6wKaQVnv_uW_AZP4e3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><source>Elsevier</source><creator>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</creator><creatorcontrib>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</creatorcontrib><description>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.
•The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2016.06.039</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam shape coefficients ; Bessel beams ; Engineering Sciences ; Generalized Lorenz–Mie theories ; Localized approximations ; Optics ; Photonic ; Physics</subject><ispartof>Journal of quantitative spectroscopy & radiative transfer, 2017-07, Vol.195, p.18-25</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</citedby><cites>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01596724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouesbet, Gérard</creatorcontrib><creatorcontrib>Lock, J.A.</creatorcontrib><creatorcontrib>Ambrosio, L.A.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><title>Journal of quantitative spectroscopy & radiative transfer</title><description>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.
•The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</description><subject>Beam shape coefficients</subject><subject>Bessel beams</subject><subject>Engineering Sciences</subject><subject>Generalized Lorenz–Mie theories</subject><subject>Localized approximations</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gZdcPew6SfYrBw-1qBUKBdFzyCazNMt2U5OltP31bq14FAaGd3ifYeYl5I5ByoAVD23afsUwpHwUKYwl5BmZsKqUCRM5PycTAM6TDEpxSa5ibAFACFZMyPuyp8MK6VZ3zrphT31DO29GdUBL9WYT_M6t9eB8TxsfqO6p7xO9c5EeMPhhlfhgMdAnjBE7WqNe35CLRncRb3_7Nfl8ef6YzZPF8vVtNl0kRohySCpt87qqa2uBY1ZVIHjWaNZkhUApC1ZaA40BKbkuKltLnlkpCpNrAViLuhLX5P60d6U7tQnjlWGvvHZqPl2o4wxYLouSZ1s2esXJa4KPMWDzBzBQxwhVq34iVMcIFYwl5Eg9nigc39g6DCoah71B6wKaQVnv_uW_AZP4e3k</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Gouesbet, Gérard</creator><creator>Lock, J.A.</creator><creator>Ambrosio, L.A.</creator><creator>Wang, J.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20170701</creationdate><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><author>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beam shape coefficients</topic><topic>Bessel beams</topic><topic>Engineering Sciences</topic><topic>Generalized Lorenz–Mie theories</topic><topic>Localized approximations</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouesbet, Gérard</creatorcontrib><creatorcontrib>Lock, J.A.</creatorcontrib><creatorcontrib>Ambrosio, L.A.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of quantitative spectroscopy & radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouesbet, Gérard</au><au>Lock, J.A.</au><au>Ambrosio, L.A.</au><au>Wang, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</atitle><jtitle>Journal of quantitative spectroscopy & radiative transfer</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>195</volume><spage>18</spage><epage>25</epage><pages>18-25</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles.
•The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2016.06.039</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4073 |
ispartof | Journal of quantitative spectroscopy & radiative transfer, 2017-07, Vol.195, p.18-25 |
issn | 0022-4073 1879-1352 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01596724v1 |
source | Elsevier |
subjects | Beam shape coefficients Bessel beams Engineering Sciences Generalized Lorenz–Mie theories Localized approximations Optics Photonic Physics |
title | On the validity of localized approximation for an on-axis zeroth-order Bessel beam |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20validity%20of%20localized%20approximation%20for%20an%20on-axis%20zeroth-order%20Bessel%20beam&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Gouesbet,%20G%C3%A9rard&rft.date=2017-07-01&rft.volume=195&rft.spage=18&rft.epage=25&rft.pages=18-25&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2016.06.039&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01596724v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |