Loading…

On the validity of localized approximation for an on-axis zeroth-order Bessel beam

Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 2017-07, Vol.195, p.18-25
Main Authors: Gouesbet, Gérard, Lock, J.A., Ambrosio, L.A., Wang, J.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83
cites cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83
container_end_page 25
container_issue
container_start_page 18
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 195
creator Gouesbet, Gérard
Lock, J.A.
Ambrosio, L.A.
Wang, J.J.
description Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. •The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.
doi_str_mv 10.1016/j.jqsrt.2016.06.039
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01596724v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407316300826</els_id><sourcerecordid>oai_HAL_hal_01596724v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD9-gZdcPew6SfYrBw-1qBUKBdFzyCazNMt2U5OltP31bq14FAaGd3ifYeYl5I5ByoAVD23afsUwpHwUKYwl5BmZsKqUCRM5PycTAM6TDEpxSa5ibAFACFZMyPuyp8MK6VZ3zrphT31DO29GdUBL9WYT_M6t9eB8TxsfqO6p7xO9c5EeMPhhlfhgMdAnjBE7WqNe35CLRncRb3_7Nfl8ef6YzZPF8vVtNl0kRohySCpt87qqa2uBY1ZVIHjWaNZkhUApC1ZaA40BKbkuKltLnlkpCpNrAViLuhLX5P60d6U7tQnjlWGvvHZqPl2o4wxYLouSZ1s2esXJa4KPMWDzBzBQxwhVq34iVMcIFYwl5Eg9nigc39g6DCoah71B6wKaQVnv_uW_AZP4e3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><source>Elsevier</source><creator>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</creator><creatorcontrib>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</creatorcontrib><description>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. •The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2016.06.039</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beam shape coefficients ; Bessel beams ; Engineering Sciences ; Generalized Lorenz–Mie theories ; Localized approximations ; Optics ; Photonic ; Physics</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2017-07, Vol.195, p.18-25</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</citedby><cites>FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01596724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouesbet, Gérard</creatorcontrib><creatorcontrib>Lock, J.A.</creatorcontrib><creatorcontrib>Ambrosio, L.A.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. •The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</description><subject>Beam shape coefficients</subject><subject>Bessel beams</subject><subject>Engineering Sciences</subject><subject>Generalized Lorenz–Mie theories</subject><subject>Localized approximations</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD9-gZdcPew6SfYrBw-1qBUKBdFzyCazNMt2U5OltP31bq14FAaGd3ifYeYl5I5ByoAVD23afsUwpHwUKYwl5BmZsKqUCRM5PycTAM6TDEpxSa5ibAFACFZMyPuyp8MK6VZ3zrphT31DO29GdUBL9WYT_M6t9eB8TxsfqO6p7xO9c5EeMPhhlfhgMdAnjBE7WqNe35CLRncRb3_7Nfl8ef6YzZPF8vVtNl0kRohySCpt87qqa2uBY1ZVIHjWaNZkhUApC1ZaA40BKbkuKltLnlkpCpNrAViLuhLX5P60d6U7tQnjlWGvvHZqPl2o4wxYLouSZ1s2esXJa4KPMWDzBzBQxwhVq34iVMcIFYwl5Eg9nigc39g6DCoah71B6wKaQVnv_uW_AZP4e3k</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Gouesbet, Gérard</creator><creator>Lock, J.A.</creator><creator>Ambrosio, L.A.</creator><creator>Wang, J.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20170701</creationdate><title>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</title><author>Gouesbet, Gérard ; Lock, J.A. ; Ambrosio, L.A. ; Wang, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Beam shape coefficients</topic><topic>Bessel beams</topic><topic>Engineering Sciences</topic><topic>Generalized Lorenz–Mie theories</topic><topic>Localized approximations</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouesbet, Gérard</creatorcontrib><creatorcontrib>Lock, J.A.</creatorcontrib><creatorcontrib>Ambrosio, L.A.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouesbet, Gérard</au><au>Lock, J.A.</au><au>Ambrosio, L.A.</au><au>Wang, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the validity of localized approximation for an on-axis zeroth-order Bessel beam</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>195</volume><spage>18</spage><epage>25</epage><pages>18-25</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>Localized approximation procedures are efficient ways to evaluate beam shape coefficients of laser beams, and are particularly useful when other methods are ineffective or inefficient. Several papers in the literature have reported the use of such procedures to evaluate the beam shape coefficients of Bessel beams. Examining the specific case of an on-axis zeroth-order Bessel beam, we demonstrate that localized approximation procedures are valid only for small axicon angles. •The localized approximation has been widely used to evaluate the Beam Shape Coefficients (BSCs) of Bessel beams.•The validity of this approximation is examined in the case of an on-axis zeroth-order Bessel beam.•It is demonstrated, in this specific example, that the localized approximation is efficient only for small enough axicon angles.•It is easily argued that this result must remain true for any kind of Bessel beams.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2016.06.039</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2017-07, Vol.195, p.18-25
issn 0022-4073
1879-1352
language eng
recordid cdi_hal_primary_oai_HAL_hal_01596724v1
source Elsevier
subjects Beam shape coefficients
Bessel beams
Engineering Sciences
Generalized Lorenz–Mie theories
Localized approximations
Optics
Photonic
Physics
title On the validity of localized approximation for an on-axis zeroth-order Bessel beam
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20validity%20of%20localized%20approximation%20for%20an%20on-axis%20zeroth-order%20Bessel%20beam&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Gouesbet,%20G%C3%A9rard&rft.date=2017-07-01&rft.volume=195&rft.spage=18&rft.epage=25&rft.pages=18-25&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2016.06.039&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01596724v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-8ad5b8bbdd02e4880324fa1f463e99617dc0fc0992a68db924d936c5a30eb3b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true