Loading…
C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation
Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding a...
Saved in:
Published in: | The Journal of biological chemistry 1999-07, Vol.274 (31), p.21873-21877 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 21877 |
container_issue | 31 |
container_start_page | 21873 |
container_title | The Journal of biological chemistry |
container_volume | 274 |
creator | Haardt, M Benharouga, M Lechardeur, D Kartner, N Lukacs, G L |
description | Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations. |
doi_str_mv | 10.1074/jbc.274.31.21873 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01606045v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17274037</sourcerecordid><originalsourceid>FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933</originalsourceid><addsrcrecordid>eNo9kUtLxDAUhYMoOj72riQrwUVrHm3TLofBFwy4UXBXbtN0JpImY5Iq4w_x9xqfd3Pg3o_D5RyETinJKRHF5XMncyaKnNOc0VrwHTSjpOYZL-nTLpoRwmjWsLI-QIchPJM0RUP30QElBW1KUs3QxyKLyo_agsHRT1ZC1M4G3KsQodNGvysc1wrLbYha4kF33gUdEgs2jGrskqars_0kI1ipsFeryUB0Hr_puHZTxHrcgPbarrCOAXfarZRVySTHc2zdqzJYGggBuwGPU_x-4BjtDWCCOvnVI_R4ffWwuM2W9zd3i_kyWzPBYqZoCVAXgtQFGRrRy6GDriJMDHSgpZS8gh4ISFaJng8MOFS8r3gpuWr6uuH8CF38-K7BtBuvR_Db1oFub-fL9mtHaEUqUpSvNLHnP-zGu5cp5dOOOkhlTErATaGlIlVBuEjg2S84daPq_33_Uuef7zGIhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17274037</pqid></control><display><type>article</type><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><source>ScienceDirect Journals</source><creator>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</creator><creatorcontrib>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</creatorcontrib><description>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.274.31.21873</identifier><identifier>PMID: 10419506</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>1-Methyl-3-isobutylxanthine - pharmacology ; Animals ; Cell Line ; Cell Membrane - physiology ; Codon, Terminator - genetics ; COS Cells ; Cricetinae ; Cystic Fibrosis - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - physiology ; Databases, Factual ; DNA Primers ; Frameshift Mutation ; Heterozygote ; Humans ; Life Sciences ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Other ; Polymerase Chain Reaction ; Protein Folding ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - metabolism ; Sequence Deletion ; Transfection</subject><ispartof>The Journal of biological chemistry, 1999-07, Vol.274 (31), p.21873-21877</ispartof><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5331-4607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10419506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01606045$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haardt, M</creatorcontrib><creatorcontrib>Benharouga, M</creatorcontrib><creatorcontrib>Lechardeur, D</creatorcontrib><creatorcontrib>Kartner, N</creatorcontrib><creatorcontrib>Lukacs, G L</creatorcontrib><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</description><subject>1-Methyl-3-isobutylxanthine - pharmacology</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Membrane - physiology</subject><subject>Codon, Terminator - genetics</subject><subject>COS Cells</subject><subject>Cricetinae</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</subject><subject>Databases, Factual</subject><subject>DNA Primers</subject><subject>Frameshift Mutation</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Other</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Folding</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Deletion</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLxDAUhYMoOj72riQrwUVrHm3TLofBFwy4UXBXbtN0JpImY5Iq4w_x9xqfd3Pg3o_D5RyETinJKRHF5XMncyaKnNOc0VrwHTSjpOYZL-nTLpoRwmjWsLI-QIchPJM0RUP30QElBW1KUs3QxyKLyo_agsHRT1ZC1M4G3KsQodNGvysc1wrLbYha4kF33gUdEgs2jGrskqars_0kI1ipsFeryUB0Hr_puHZTxHrcgPbarrCOAXfarZRVySTHc2zdqzJYGggBuwGPU_x-4BjtDWCCOvnVI_R4ffWwuM2W9zd3i_kyWzPBYqZoCVAXgtQFGRrRy6GDriJMDHSgpZS8gh4ISFaJng8MOFS8r3gpuWr6uuH8CF38-K7BtBuvR_Db1oFub-fL9mtHaEUqUpSvNLHnP-zGu5cp5dOOOkhlTErATaGlIlVBuEjg2S84daPq_33_Uuef7zGIhg</recordid><startdate>19990730</startdate><enddate>19990730</enddate><creator>Haardt, M</creator><creator>Benharouga, M</creator><creator>Lechardeur, D</creator><creator>Kartner, N</creator><creator>Lukacs, G L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5331-4607</orcidid></search><sort><creationdate>19990730</creationdate><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><author>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>1-Methyl-3-isobutylxanthine - pharmacology</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Membrane - physiology</topic><topic>Codon, Terminator - genetics</topic><topic>COS Cells</topic><topic>Cricetinae</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</topic><topic>Databases, Factual</topic><topic>DNA Primers</topic><topic>Frameshift Mutation</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Other</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Folding</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Deletion</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haardt, M</creatorcontrib><creatorcontrib>Benharouga, M</creatorcontrib><creatorcontrib>Lechardeur, D</creatorcontrib><creatorcontrib>Kartner, N</creatorcontrib><creatorcontrib>Lukacs, G L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haardt, M</au><au>Benharouga, M</au><au>Lechardeur, D</au><au>Kartner, N</au><au>Lukacs, G L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1999-07-30</date><risdate>1999</risdate><volume>274</volume><issue>31</issue><spage>21873</spage><epage>21877</epage><pages>21873-21877</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>10419506</pmid><doi>10.1074/jbc.274.31.21873</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5331-4607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1999-07, Vol.274 (31), p.21873-21877 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01606045v1 |
source | ScienceDirect Journals |
subjects | 1-Methyl-3-isobutylxanthine - pharmacology Animals Cell Line Cell Membrane - physiology Codon, Terminator - genetics COS Cells Cricetinae Cystic Fibrosis - genetics Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis Cystic Fibrosis Transmembrane Conductance Regulator - genetics Cystic Fibrosis Transmembrane Conductance Regulator - physiology Databases, Factual DNA Primers Frameshift Mutation Heterozygote Humans Life Sciences Membrane Potentials - drug effects Membrane Potentials - physiology Other Polymerase Chain Reaction Protein Folding Recombinant Proteins - biosynthesis Recombinant Proteins - metabolism Sequence Deletion Transfection |
title | C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-terminal%20truncations%20destabilize%20the%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20without%20impairing%20its%20biogenesis.%20A%20novel%20class%20of%20mutation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Haardt,%20M&rft.date=1999-07-30&rft.volume=274&rft.issue=31&rft.spage=21873&rft.epage=21877&rft.pages=21873-21877&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.274.31.21873&rft_dat=%3Cproquest_hal_p%3E17274037%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17274037&rft_id=info:pmid/10419506&rfr_iscdi=true |