Loading…

C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation

Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-07, Vol.274 (31), p.21873-21877
Main Authors: Haardt, M, Benharouga, M, Lechardeur, D, Kartner, N, Lukacs, G L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 21877
container_issue 31
container_start_page 21873
container_title The Journal of biological chemistry
container_volume 274
creator Haardt, M
Benharouga, M
Lechardeur, D
Kartner, N
Lukacs, G L
description Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.
doi_str_mv 10.1074/jbc.274.31.21873
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01606045v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17274037</sourcerecordid><originalsourceid>FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933</originalsourceid><addsrcrecordid>eNo9kUtLxDAUhYMoOj72riQrwUVrHm3TLofBFwy4UXBXbtN0JpImY5Iq4w_x9xqfd3Pg3o_D5RyETinJKRHF5XMncyaKnNOc0VrwHTSjpOYZL-nTLpoRwmjWsLI-QIchPJM0RUP30QElBW1KUs3QxyKLyo_agsHRT1ZC1M4G3KsQodNGvysc1wrLbYha4kF33gUdEgs2jGrskqars_0kI1ipsFeryUB0Hr_puHZTxHrcgPbarrCOAXfarZRVySTHc2zdqzJYGggBuwGPU_x-4BjtDWCCOvnVI_R4ffWwuM2W9zd3i_kyWzPBYqZoCVAXgtQFGRrRy6GDriJMDHSgpZS8gh4ISFaJng8MOFS8r3gpuWr6uuH8CF38-K7BtBuvR_Db1oFub-fL9mtHaEUqUpSvNLHnP-zGu5cp5dOOOkhlTErATaGlIlVBuEjg2S84daPq_33_Uuef7zGIhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17274037</pqid></control><display><type>article</type><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><source>ScienceDirect Journals</source><creator>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</creator><creatorcontrib>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</creatorcontrib><description>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.274.31.21873</identifier><identifier>PMID: 10419506</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>1-Methyl-3-isobutylxanthine - pharmacology ; Animals ; Cell Line ; Cell Membrane - physiology ; Codon, Terminator - genetics ; COS Cells ; Cricetinae ; Cystic Fibrosis - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - physiology ; Databases, Factual ; DNA Primers ; Frameshift Mutation ; Heterozygote ; Humans ; Life Sciences ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Other ; Polymerase Chain Reaction ; Protein Folding ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - metabolism ; Sequence Deletion ; Transfection</subject><ispartof>The Journal of biological chemistry, 1999-07, Vol.274 (31), p.21873-21877</ispartof><rights>Attribution - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5331-4607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10419506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01606045$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haardt, M</creatorcontrib><creatorcontrib>Benharouga, M</creatorcontrib><creatorcontrib>Lechardeur, D</creatorcontrib><creatorcontrib>Kartner, N</creatorcontrib><creatorcontrib>Lukacs, G L</creatorcontrib><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</description><subject>1-Methyl-3-isobutylxanthine - pharmacology</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell Membrane - physiology</subject><subject>Codon, Terminator - genetics</subject><subject>COS Cells</subject><subject>Cricetinae</subject><subject>Cystic Fibrosis - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</subject><subject>Databases, Factual</subject><subject>DNA Primers</subject><subject>Frameshift Mutation</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Other</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Folding</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Deletion</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLxDAUhYMoOj72riQrwUVrHm3TLofBFwy4UXBXbtN0JpImY5Iq4w_x9xqfd3Pg3o_D5RyETinJKRHF5XMncyaKnNOc0VrwHTSjpOYZL-nTLpoRwmjWsLI-QIchPJM0RUP30QElBW1KUs3QxyKLyo_agsHRT1ZC1M4G3KsQodNGvysc1wrLbYha4kF33gUdEgs2jGrskqars_0kI1ipsFeryUB0Hr_puHZTxHrcgPbarrCOAXfarZRVySTHc2zdqzJYGggBuwGPU_x-4BjtDWCCOvnVI_R4ffWwuM2W9zd3i_kyWzPBYqZoCVAXgtQFGRrRy6GDriJMDHSgpZS8gh4ISFaJng8MOFS8r3gpuWr6uuH8CF38-K7BtBuvR_Db1oFub-fL9mtHaEUqUpSvNLHnP-zGu5cp5dOOOkhlTErATaGlIlVBuEjg2S84daPq_33_Uuef7zGIhg</recordid><startdate>19990730</startdate><enddate>19990730</enddate><creator>Haardt, M</creator><creator>Benharouga, M</creator><creator>Lechardeur, D</creator><creator>Kartner, N</creator><creator>Lukacs, G L</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5331-4607</orcidid></search><sort><creationdate>19990730</creationdate><title>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</title><author>Haardt, M ; Benharouga, M ; Lechardeur, D ; Kartner, N ; Lukacs, G L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>1-Methyl-3-isobutylxanthine - pharmacology</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell Membrane - physiology</topic><topic>Codon, Terminator - genetics</topic><topic>COS Cells</topic><topic>Cricetinae</topic><topic>Cystic Fibrosis - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - physiology</topic><topic>Databases, Factual</topic><topic>DNA Primers</topic><topic>Frameshift Mutation</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Other</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Folding</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Deletion</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haardt, M</creatorcontrib><creatorcontrib>Benharouga, M</creatorcontrib><creatorcontrib>Lechardeur, D</creatorcontrib><creatorcontrib>Kartner, N</creatorcontrib><creatorcontrib>Lukacs, G L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haardt, M</au><au>Benharouga, M</au><au>Lechardeur, D</au><au>Kartner, N</au><au>Lukacs, G L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1999-07-30</date><risdate>1999</risdate><volume>274</volume><issue>31</issue><spage>21873</spage><epage>21877</epage><pages>21873-21877</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>10419506</pmid><doi>10.1074/jbc.274.31.21873</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5331-4607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1999-07, Vol.274 (31), p.21873-21877
issn 0021-9258
1083-351X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01606045v1
source ScienceDirect Journals
subjects 1-Methyl-3-isobutylxanthine - pharmacology
Animals
Cell Line
Cell Membrane - physiology
Codon, Terminator - genetics
COS Cells
Cricetinae
Cystic Fibrosis - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - biosynthesis
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - physiology
Databases, Factual
DNA Primers
Frameshift Mutation
Heterozygote
Humans
Life Sciences
Membrane Potentials - drug effects
Membrane Potentials - physiology
Other
Polymerase Chain Reaction
Protein Folding
Recombinant Proteins - biosynthesis
Recombinant Proteins - metabolism
Sequence Deletion
Transfection
title C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-terminal%20truncations%20destabilize%20the%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20without%20impairing%20its%20biogenesis.%20A%20novel%20class%20of%20mutation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Haardt,%20M&rft.date=1999-07-30&rft.volume=274&rft.issue=31&rft.spage=21873&rft.epage=21877&rft.pages=21873-21877&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.274.31.21873&rft_dat=%3Cproquest_hal_p%3E17274037%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h272t-e15aa8470840f97dcfbab6027f1f15cc36ada0ac267d3f2a3a63d635c3e9d8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17274037&rft_id=info:pmid/10419506&rfr_iscdi=true