Loading…

Tren-Capped Hexaphyrin Zinc Complexes: Interplaying Molecular Recognition, Möbius Aromaticity, and Chirality

Over the past decade, the hexaphyrin skeleton has emerged as a multifaceted frame exhibiting strong interplay between topology, aromaticity, and metal coordination, opening new research areas beyond porphyrins. However, molecular recognition with hexaphyrins has been underexplored, mainly because of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-10, Vol.139 (39), p.13847-13857
Main Authors: Ruffin, Hervé, Nyame Mendendy Boussambe, Gildas, Roisnel, Thierry, Dorcet, Vincent, Boitrel, Bernard, Le Gac, Stéphane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past decade, the hexaphyrin skeleton has emerged as a multifaceted frame exhibiting strong interplay between topology, aromaticity, and metal coordination, opening new research areas beyond porphyrins. However, molecular recognition with hexaphyrins has been underexplored, mainly because of the lack of general synthetic strategies leading to sophisticated molecular hosts. Here we have developed a straightforward approach for capping the heteroannulene frame with tripodal units (e.g., tris(2-aminoethyl)amine [tren]) through postsynthetic modification of a readily accessible meso-(2-aminophenyl) tris-substituted platform. The resulting tren-capped hexaphyrins, obtained in three steps from a 5-(aryl)dipyrromethane precursor, display remarkable features: (i) Considering the 28π-conjugated system, instantaneous and site-selective Zn(II) metalation at the level of a dipyrrin versus tren unit triggers a planar-to-singly twisted conformational change and hence a Hückel antiaromatic-to-Möbius aromatic transformation. In spite of the tripodal linkage, a smooth twist and efficient π overlap are preserved. (ii) Selective and cooperative binding of both an acetato ligand and an amino ligand to zinc occurs in distinct confined environments, reminiscent of substrate discrimination at the buried metal centers of metalloenzymes. The ligand binding pockets are allosterically tuned by monoprotonation of the tren unit. (iii) Substantial chiral induction of the molecular twist is achieved using chiral amino ligands (diastereomeric excess up to 77%, the highest reported to date for a Möbius compound), to which is associated a strong chiroptical signature in circular dichroism. These results provide unprecedented insights into molecular recognition with hexaphyrins, paving the way to innovative Möbius-type molecular hosts for sensing and catalysis.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b07559