Loading…
Thermodynamic study of the U–Si system
The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differe...
Saved in:
Published in: | Journal of nuclear materials 2009-05, Vol.389 (1), p.101-107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033 |
container_end_page | 107 |
container_issue | 1 |
container_start_page | 101 |
container_title | Journal of nuclear materials |
container_volume | 389 |
creator | Berche, A. Rado, C. Rapaud, O. Guéneau, C. Rogez, J. |
description | The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method. |
doi_str_mv | 10.1016/j.jnucmat.2009.01.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01620673v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509000245</els_id><sourcerecordid>787255291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdRsFYfQchF1EPi7G422z1JKWqFggfb87LdbOiG_Km7SSE338E39ElMSOlVGBgYft98Mx9CtxgiDDh5yqO8anWpmogAiAhwX_EZmuAZp2E8I3COJgCEhBRjdomuvM8BgAlgE_Sw3hlX1mlXqdLqwDdt2gV1FjQ7E2x-v38-beA735jyGl1kqvDm5tinaPP6sl4sw9XH2_tivgp1DKwJBUmSVGhOY8IZTWgaJ0xjDIkggjAKbEtpluJMa6MzzjHXaovN1mQi6U8CSqfocdy7U4XcO1sq18laWbmcr-Qw6z8mkHB6wD17P7J7V3-1xjeytF6bolCVqVsv-YwTxogYSDaS2tXeO5OdVmOQQ4gyl8cQ5RBi79JX3Ovujg7Ka1VkTlXa-pOYYA6C8IF7HjnTR3Owxkmvram0Sa0zupFpbf9x-gONmIgX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787255291</pqid></control><display><type>article</type><title>Thermodynamic study of the U–Si system</title><source>Elsevier</source><creator>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</creator><creatorcontrib>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</creatorcontrib><description>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.01.014</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Material chemistry ; Materials ; Nuclear fuels ; or physical chemistry ; Preparation and processing of nuclear fuels ; Theoretical and</subject><ispartof>Journal of nuclear materials, 2009-05, Vol.389 (1), p.101-107</ispartof><rights>2009</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</citedby><cites>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</cites><orcidid>0000-0002-4426-760X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21709274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01620673$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berche, A.</creatorcontrib><creatorcontrib>Rado, C.</creatorcontrib><creatorcontrib>Rapaud, O.</creatorcontrib><creatorcontrib>Guéneau, C.</creatorcontrib><creatorcontrib>Rogez, J.</creatorcontrib><title>Thermodynamic study of the U–Si system</title><title>Journal of nuclear materials</title><description>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Nuclear fuels</subject><subject>or physical chemistry</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Theoretical and</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdRsFYfQchF1EPi7G422z1JKWqFggfb87LdbOiG_Km7SSE338E39ElMSOlVGBgYft98Mx9CtxgiDDh5yqO8anWpmogAiAhwX_EZmuAZp2E8I3COJgCEhBRjdomuvM8BgAlgE_Sw3hlX1mlXqdLqwDdt2gV1FjQ7E2x-v38-beA735jyGl1kqvDm5tinaPP6sl4sw9XH2_tivgp1DKwJBUmSVGhOY8IZTWgaJ0xjDIkggjAKbEtpluJMa6MzzjHXaovN1mQi6U8CSqfocdy7U4XcO1sq18laWbmcr-Qw6z8mkHB6wD17P7J7V3-1xjeytF6bolCVqVsv-YwTxogYSDaS2tXeO5OdVmOQQ4gyl8cQ5RBi79JX3Ovujg7Ka1VkTlXa-pOYYA6C8IF7HjnTR3Owxkmvram0Sa0zupFpbf9x-gONmIgX</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Berche, A.</creator><creator>Rado, C.</creator><creator>Rapaud, O.</creator><creator>Guéneau, C.</creator><creator>Rogez, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid></search><sort><creationdate>20090515</creationdate><title>Thermodynamic study of the U–Si system</title><author>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Nuclear fuels</topic><topic>or physical chemistry</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berche, A.</creatorcontrib><creatorcontrib>Rado, C.</creatorcontrib><creatorcontrib>Rapaud, O.</creatorcontrib><creatorcontrib>Guéneau, C.</creatorcontrib><creatorcontrib>Rogez, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berche, A.</au><au>Rado, C.</au><au>Rapaud, O.</au><au>Guéneau, C.</au><au>Rogez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic study of the U–Si system</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>389</volume><issue>1</issue><spage>101</spage><epage>107</epage><pages>101-107</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.01.014</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2009-05, Vol.389 (1), p.101-107 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01620673v1 |
source | Elsevier |
subjects | Applied sciences Chemical Sciences Controled nuclear fusion plants Energy Energy. Thermal use of fuels Engineering Sciences Exact sciences and technology Fission nuclear power plants Fuels Installations for energy generation and conversion: thermal and electrical energy Material chemistry Materials Nuclear fuels or physical chemistry Preparation and processing of nuclear fuels Theoretical and |
title | Thermodynamic study of the U–Si system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20study%20of%20the%20U%E2%80%93Si%20system&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Berche,%20A.&rft.date=2009-05-15&rft.volume=389&rft.issue=1&rft.spage=101&rft.epage=107&rft.pages=101-107&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.01.014&rft_dat=%3Cproquest_hal_p%3E787255291%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787255291&rft_id=info:pmid/&rfr_iscdi=true |