Loading…

Thermodynamic study of the U–Si system

The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2009-05, Vol.389 (1), p.101-107
Main Authors: Berche, A., Rado, C., Rapaud, O., Guéneau, C., Rogez, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033
cites cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033
container_end_page 107
container_issue 1
container_start_page 101
container_title Journal of nuclear materials
container_volume 389
creator Berche, A.
Rado, C.
Rapaud, O.
Guéneau, C.
Rogez, J.
description The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.
doi_str_mv 10.1016/j.jnucmat.2009.01.014
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01620673v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311509000245</els_id><sourcerecordid>787255291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdRsFYfQchF1EPi7G422z1JKWqFggfb87LdbOiG_Km7SSE338E39ElMSOlVGBgYft98Mx9CtxgiDDh5yqO8anWpmogAiAhwX_EZmuAZp2E8I3COJgCEhBRjdomuvM8BgAlgE_Sw3hlX1mlXqdLqwDdt2gV1FjQ7E2x-v38-beA735jyGl1kqvDm5tinaPP6sl4sw9XH2_tivgp1DKwJBUmSVGhOY8IZTWgaJ0xjDIkggjAKbEtpluJMa6MzzjHXaovN1mQi6U8CSqfocdy7U4XcO1sq18laWbmcr-Qw6z8mkHB6wD17P7J7V3-1xjeytF6bolCVqVsv-YwTxogYSDaS2tXeO5OdVmOQQ4gyl8cQ5RBi79JX3Ovujg7Ka1VkTlXa-pOYYA6C8IF7HjnTR3Owxkmvram0Sa0zupFpbf9x-gONmIgX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787255291</pqid></control><display><type>article</type><title>Thermodynamic study of the U–Si system</title><source>Elsevier</source><creator>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</creator><creatorcontrib>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</creatorcontrib><description>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2009.01.014</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Material chemistry ; Materials ; Nuclear fuels ; or physical chemistry ; Preparation and processing of nuclear fuels ; Theoretical and</subject><ispartof>Journal of nuclear materials, 2009-05, Vol.389 (1), p.101-107</ispartof><rights>2009</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</citedby><cites>FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</cites><orcidid>0000-0002-4426-760X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21709274$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01620673$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berche, A.</creatorcontrib><creatorcontrib>Rado, C.</creatorcontrib><creatorcontrib>Rapaud, O.</creatorcontrib><creatorcontrib>Guéneau, C.</creatorcontrib><creatorcontrib>Rogez, J.</creatorcontrib><title>Thermodynamic study of the U–Si system</title><title>Journal of nuclear materials</title><description>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Nuclear fuels</subject><subject>or physical chemistry</subject><subject>Preparation and processing of nuclear fuels</subject><subject>Theoretical and</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdRsFYfQchF1EPi7G422z1JKWqFggfb87LdbOiG_Km7SSE338E39ElMSOlVGBgYft98Mx9CtxgiDDh5yqO8anWpmogAiAhwX_EZmuAZp2E8I3COJgCEhBRjdomuvM8BgAlgE_Sw3hlX1mlXqdLqwDdt2gV1FjQ7E2x-v38-beA735jyGl1kqvDm5tinaPP6sl4sw9XH2_tivgp1DKwJBUmSVGhOY8IZTWgaJ0xjDIkggjAKbEtpluJMa6MzzjHXaovN1mQi6U8CSqfocdy7U4XcO1sq18laWbmcr-Qw6z8mkHB6wD17P7J7V3-1xjeytF6bolCVqVsv-YwTxogYSDaS2tXeO5OdVmOQQ4gyl8cQ5RBi79JX3Ovujg7Ka1VkTlXa-pOYYA6C8IF7HjnTR3Owxkmvram0Sa0zupFpbf9x-gONmIgX</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Berche, A.</creator><creator>Rado, C.</creator><creator>Rapaud, O.</creator><creator>Guéneau, C.</creator><creator>Rogez, J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid></search><sort><creationdate>20090515</creationdate><title>Thermodynamic study of the U–Si system</title><author>Berche, A. ; Rado, C. ; Rapaud, O. ; Guéneau, C. ; Rogez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Nuclear fuels</topic><topic>or physical chemistry</topic><topic>Preparation and processing of nuclear fuels</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berche, A.</creatorcontrib><creatorcontrib>Rado, C.</creatorcontrib><creatorcontrib>Rapaud, O.</creatorcontrib><creatorcontrib>Guéneau, C.</creatorcontrib><creatorcontrib>Rogez, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berche, A.</au><au>Rado, C.</au><au>Rapaud, O.</au><au>Guéneau, C.</au><au>Rogez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic study of the U–Si system</atitle><jtitle>Journal of nuclear materials</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>389</volume><issue>1</issue><spage>101</spage><epage>107</epage><pages>101-107</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The uranium–silicon phase diagram is a key system to predict the possible interaction between the fuel kernel (U, Pu)C and the inert matrix SiC considered for the gas-cooled fast reactor systems. The experimental data from the literature on the uranium–silicon system are critically reviewed. Differential Thermal Analysis experiments are carried out to measure the temperatures of the phase transitions in the composition range 6–46% at Si. The experimental results are compared to the available data of the literature. The microstructure of the samples has been analysed using scanning electron microscopy. In view of the analyses, some solidification paths are proposed. Finally, the present experimental results and the available data of the literature have been used to perform a thermodynamic modelling of the uranium–silicon system using the CALPHAD method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2009.01.014</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4426-760X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2009-05, Vol.389 (1), p.101-107
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_01620673v1
source Elsevier
subjects Applied sciences
Chemical Sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Engineering Sciences
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Material chemistry
Materials
Nuclear fuels
or physical chemistry
Preparation and processing of nuclear fuels
Theoretical and
title Thermodynamic study of the U–Si system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20study%20of%20the%20U%E2%80%93Si%20system&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Berche,%20A.&rft.date=2009-05-15&rft.volume=389&rft.issue=1&rft.spage=101&rft.epage=107&rft.pages=101-107&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2009.01.014&rft_dat=%3Cproquest_hal_p%3E787255291%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-9266d9c734275363d465c110692925305b33fd1fccecf7717cab1ebef96005033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787255291&rft_id=info:pmid/&rfr_iscdi=true