Loading…

Robust feature extraction algorithm suitable for real-time embedded applications

Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing 2018-03, Vol.14 (3), p.647-665
Main Authors: Aguilar-González, Abiel, Arias-Estrada, Miguel, Berry, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3
cites cdi_FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3
container_end_page 665
container_issue 3
container_start_page 647
container_title Journal of real-time image processing
container_volume 14
creator Aguilar-González, Abiel
Arias-Estrada, Miguel
Berry, François
description Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately, in most of cases, features detection algorithms are not robust or do not reach real-time processing. Based on these limitations, a feature detection algorithm that is robust enough to deliver robust features under any type of indoor/outdoor scenarios is proposed. This was achieved by applying a non-textured corner filter combined to a subpixel refinement. Furthermore, an FPGA architecture is proposed. This architecture allows compact system design, real-time processing for Full HD images (it can process up to 44 frames/91.238.400 pixels per second for Full HD images), and high efficiency for smart camera implementations (similar hardware resources than previous formulations without subpixel refinement and without non-textured corner filter). For accuracy/robustness, experimental results for several real-world scenes are encouraging and show the feasibility of our algorithmic approach.
doi_str_mv 10.1007/s11554-017-0701-8
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01627719v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918674236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhosouK4-gLeCJw_VmbRNNsdF1BUWFNFzSNPpbpd2W5NU9O1NqawnTzMM3_8zfFF0iXCDAOLWIeZ5lgCKBARgsjiKZrjgYWEojw87wGl05twOgAue5rPo5bUrBufjirQfLMX05a02vu72sW42na39to3dUHtdNBRXnY0t6SbxdRvYtqCypDLWfd_URo8pdx6dVLpxdPE759H7w_3b3SpZPz8-3S3XiUll6pOCBBJjJSMGwkhZFVUujSQEDUYLJrnJDfA8Q4ZllunC8JwXQLqiHKusTOfR9dS71Y3qbd1q-606XavVcq3GGyBnQqD8xMBeTWxvu4-BnFe7brD78J5iMpgRGUt5oHCijO2cs1QdahHUKFlNkkOzUKNktQgZNmVcYPcbsn_N_4d-ACd2fzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918674236</pqid></control><display><type>article</type><title>Robust feature extraction algorithm suitable for real-time embedded applications</title><source>Springer Nature</source><creator>Aguilar-González, Abiel ; Arias-Estrada, Miguel ; Berry, François</creator><creatorcontrib>Aguilar-González, Abiel ; Arias-Estrada, Miguel ; Berry, François</creatorcontrib><description>Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately, in most of cases, features detection algorithms are not robust or do not reach real-time processing. Based on these limitations, a feature detection algorithm that is robust enough to deliver robust features under any type of indoor/outdoor scenarios is proposed. This was achieved by applying a non-textured corner filter combined to a subpixel refinement. Furthermore, an FPGA architecture is proposed. This architecture allows compact system design, real-time processing for Full HD images (it can process up to 44 frames/91.238.400 pixels per second for Full HD images), and high efficiency for smart camera implementations (similar hardware resources than previous formulations without subpixel refinement and without non-textured corner filter). For accuracy/robustness, experimental results for several real-world scenes are encouraging and show the feasibility of our algorithmic approach.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-017-0701-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Calibration ; Cameras ; Computer Graphics ; Computer Science ; Computer Vision and Pattern Recognition ; Computers ; Embedded systems ; Feature extraction ; Field programmable gate arrays ; Hardware Architecture ; Image Processing and Computer Vision ; Localization ; Multimedia Information Systems ; Pattern Recognition ; Pixels ; Real time ; Robotics ; Robustness ; Signal,Image and Speech Processing ; Special Issue Paper ; Surveillance ; Systems design ; Vision systems</subject><ispartof>Journal of real-time image processing, 2018-03, Vol.14 (3), p.647-665</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Springer-Verlag GmbH Germany 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3</citedby><cites>FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3</cites><orcidid>0000-0002-4941-9967 ; 0000-0002-5899-4672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01627719$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguilar-González, Abiel</creatorcontrib><creatorcontrib>Arias-Estrada, Miguel</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><title>Robust feature extraction algorithm suitable for real-time embedded applications</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately, in most of cases, features detection algorithms are not robust or do not reach real-time processing. Based on these limitations, a feature detection algorithm that is robust enough to deliver robust features under any type of indoor/outdoor scenarios is proposed. This was achieved by applying a non-textured corner filter combined to a subpixel refinement. Furthermore, an FPGA architecture is proposed. This architecture allows compact system design, real-time processing for Full HD images (it can process up to 44 frames/91.238.400 pixels per second for Full HD images), and high efficiency for smart camera implementations (similar hardware resources than previous formulations without subpixel refinement and without non-textured corner filter). For accuracy/robustness, experimental results for several real-world scenes are encouraging and show the feasibility of our algorithmic approach.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Computers</subject><subject>Embedded systems</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>Hardware Architecture</subject><subject>Image Processing and Computer Vision</subject><subject>Localization</subject><subject>Multimedia Information Systems</subject><subject>Pattern Recognition</subject><subject>Pixels</subject><subject>Real time</subject><subject>Robotics</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue Paper</subject><subject>Surveillance</subject><subject>Systems design</subject><subject>Vision systems</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhosouK4-gLeCJw_VmbRNNsdF1BUWFNFzSNPpbpd2W5NU9O1NqawnTzMM3_8zfFF0iXCDAOLWIeZ5lgCKBARgsjiKZrjgYWEojw87wGl05twOgAue5rPo5bUrBufjirQfLMX05a02vu72sW42na39to3dUHtdNBRXnY0t6SbxdRvYtqCypDLWfd_URo8pdx6dVLpxdPE759H7w_3b3SpZPz8-3S3XiUll6pOCBBJjJSMGwkhZFVUujSQEDUYLJrnJDfA8Q4ZllunC8JwXQLqiHKusTOfR9dS71Y3qbd1q-606XavVcq3GGyBnQqD8xMBeTWxvu4-BnFe7brD78J5iMpgRGUt5oHCijO2cs1QdahHUKFlNkkOzUKNktQgZNmVcYPcbsn_N_4d-ACd2fzw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Aguilar-González, Abiel</creator><creator>Arias-Estrada, Miguel</creator><creator>Berry, François</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4941-9967</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid></search><sort><creationdate>20180301</creationdate><title>Robust feature extraction algorithm suitable for real-time embedded applications</title><author>Aguilar-González, Abiel ; Arias-Estrada, Miguel ; Berry, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Computers</topic><topic>Embedded systems</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>Hardware Architecture</topic><topic>Image Processing and Computer Vision</topic><topic>Localization</topic><topic>Multimedia Information Systems</topic><topic>Pattern Recognition</topic><topic>Pixels</topic><topic>Real time</topic><topic>Robotics</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue Paper</topic><topic>Surveillance</topic><topic>Systems design</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar-González, Abiel</creatorcontrib><creatorcontrib>Arias-Estrada, Miguel</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar-González, Abiel</au><au>Arias-Estrada, Miguel</au><au>Berry, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust feature extraction algorithm suitable for real-time embedded applications</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>647</spage><epage>665</epage><pages>647-665</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Smart cameras integrate processing close to the image sensor, so they can deliver high-level information to a host computer or high-level decision process. One of the most common processing is the visual features extraction since many vision-based use-cases are based on such algorithm. Unfortunately, in most of cases, features detection algorithms are not robust or do not reach real-time processing. Based on these limitations, a feature detection algorithm that is robust enough to deliver robust features under any type of indoor/outdoor scenarios is proposed. This was achieved by applying a non-textured corner filter combined to a subpixel refinement. Furthermore, an FPGA architecture is proposed. This architecture allows compact system design, real-time processing for Full HD images (it can process up to 44 frames/91.238.400 pixels per second for Full HD images), and high efficiency for smart camera implementations (similar hardware resources than previous formulations without subpixel refinement and without non-textured corner filter). For accuracy/robustness, experimental results for several real-world scenes are encouraging and show the feasibility of our algorithmic approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-017-0701-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4941-9967</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2018-03, Vol.14 (3), p.647-665
issn 1861-8200
1861-8219
language eng
recordid cdi_hal_primary_oai_HAL_hal_01627719v1
source Springer Nature
subjects Accuracy
Algorithms
Calibration
Cameras
Computer Graphics
Computer Science
Computer Vision and Pattern Recognition
Computers
Embedded systems
Feature extraction
Field programmable gate arrays
Hardware Architecture
Image Processing and Computer Vision
Localization
Multimedia Information Systems
Pattern Recognition
Pixels
Real time
Robotics
Robustness
Signal,Image and Speech Processing
Special Issue Paper
Surveillance
Systems design
Vision systems
title Robust feature extraction algorithm suitable for real-time embedded applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20feature%20extraction%20algorithm%20suitable%20for%20real-time%20embedded%20applications&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Aguilar-Gonz%C3%A1lez,%20Abiel&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=647&rft.epage=665&rft.pages=647-665&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-017-0701-8&rft_dat=%3Cproquest_hal_p%3E2918674236%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-be71e22d2e207c99fbf59c9e10a0ca7296c5c0654121d44abc656b0eafe51f4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918674236&rft_id=info:pmid/&rfr_iscdi=true