Loading…

Slippage of water past superhydrophobic carbon nanotube forests in microchannels

We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessa...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2006-10, Vol.97 (15), p.156104-156104, Article 156104
Main Authors: Joseph, P, Cottin-Bizonne, C, Benoît, J-M, Ybert, C, Journet, C, Tabeling, P, Bocquet, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3
cites cdi_FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3
container_end_page 156104
container_issue 15
container_start_page 156104
container_title Physical review letters
container_volume 97
creator Joseph, P
Cottin-Bizonne, C
Benoît, J-M
Ybert, C
Journet, C
Tabeling, P
Bocquet, L
description We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slippage on the Cassie superhydrophobic state, associated with slip lengths of a few microns, while a vanishing slip length is found in the Wenzel state when the liquid impregnates the surface. Varying the lateral roughness scale L of our carbon nanotube forest-based superhydrophobic surfaces, we demonstrate that the slip length varies linearly with L in line with theoretical predictions for slippage on patterned surfaces.
doi_str_mv 10.1103/PhysRevLett.97.156104
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01628755v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68238331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3</originalsourceid><addsrcrecordid>eNpNkE1r3DAQhkVJabZpf0KDToEevJ2xvqxjCGlTWGhok7OQ7HHt4LUcyU7Zf99ddkl7Ghiedz4exj4hrBFBfLnvdvknvWxontfWrFFpBPmGrRCMLQyiPGMrAIGFBTDn7H3OTwCApa7esXM0qJSQcsXufw39NPnfxGPL__iZEp98nnleJkrdrklx6mLoa177FOLIRz_GeQnE25goz5n3I9_2dYp158eRhvyBvW39kOnjqV6wx6-3Dzd3xebHt-8315uiFlbMBWqtVaXBoA6VtI0QbQhYhgZarRvrpZQVaapar7xVJalSaWoCgA3aG1mLC_b5OLfzg5tSv_Vp56Lv3d31xh16gLqsjFIvuGevjuyU4vOyP9tt-1zTMPiR4pKdrkpRCXEA1RHcP5RzovZ1MoI7aHf_aXfWuKP2fe7ytGAJW2r-pU6exV8uFIFZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68238331</pqid></control><display><type>article</type><title>Slippage of water past superhydrophobic carbon nanotube forests in microchannels</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Joseph, P ; Cottin-Bizonne, C ; Benoît, J-M ; Ybert, C ; Journet, C ; Tabeling, P ; Bocquet, L</creator><creatorcontrib>Joseph, P ; Cottin-Bizonne, C ; Benoît, J-M ; Ybert, C ; Journet, C ; Tabeling, P ; Bocquet, L</creatorcontrib><description>We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slippage on the Cassie superhydrophobic state, associated with slip lengths of a few microns, while a vanishing slip length is found in the Wenzel state when the liquid impregnates the surface. Varying the lateral roughness scale L of our carbon nanotube forest-based superhydrophobic surfaces, we demonstrate that the slip length varies linearly with L in line with theoretical predictions for slippage on patterned surfaces.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.97.156104</identifier><identifier>PMID: 17155344</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; Fluid Dynamics ; Physics</subject><ispartof>Physical review letters, 2006-10, Vol.97 (15), p.156104-156104, Article 156104</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3</citedby><cites>FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3</cites><orcidid>0000-0002-2793-7229 ; 0000-0002-3328-317X ; 0000-0001-5807-9215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17155344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01628755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, P</creatorcontrib><creatorcontrib>Cottin-Bizonne, C</creatorcontrib><creatorcontrib>Benoît, J-M</creatorcontrib><creatorcontrib>Ybert, C</creatorcontrib><creatorcontrib>Journet, C</creatorcontrib><creatorcontrib>Tabeling, P</creatorcontrib><creatorcontrib>Bocquet, L</creatorcontrib><title>Slippage of water past superhydrophobic carbon nanotube forests in microchannels</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slippage on the Cassie superhydrophobic state, associated with slip lengths of a few microns, while a vanishing slip length is found in the Wenzel state when the liquid impregnates the surface. Varying the lateral roughness scale L of our carbon nanotube forest-based superhydrophobic surfaces, we demonstrate that the slip length varies linearly with L in line with theoretical predictions for slippage on patterned surfaces.</description><subject>Condensed Matter</subject><subject>Fluid Dynamics</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkE1r3DAQhkVJabZpf0KDToEevJ2xvqxjCGlTWGhok7OQ7HHt4LUcyU7Zf99ddkl7Ghiedz4exj4hrBFBfLnvdvknvWxontfWrFFpBPmGrRCMLQyiPGMrAIGFBTDn7H3OTwCApa7esXM0qJSQcsXufw39NPnfxGPL__iZEp98nnleJkrdrklx6mLoa177FOLIRz_GeQnE25goz5n3I9_2dYp158eRhvyBvW39kOnjqV6wx6-3Dzd3xebHt-8315uiFlbMBWqtVaXBoA6VtI0QbQhYhgZarRvrpZQVaapar7xVJalSaWoCgA3aG1mLC_b5OLfzg5tSv_Vp56Lv3d31xh16gLqsjFIvuGevjuyU4vOyP9tt-1zTMPiR4pKdrkpRCXEA1RHcP5RzovZ1MoI7aHf_aXfWuKP2fe7ytGAJW2r-pU6exV8uFIFZ</recordid><startdate>20061013</startdate><enddate>20061013</enddate><creator>Joseph, P</creator><creator>Cottin-Bizonne, C</creator><creator>Benoît, J-M</creator><creator>Ybert, C</creator><creator>Journet, C</creator><creator>Tabeling, P</creator><creator>Bocquet, L</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2793-7229</orcidid><orcidid>https://orcid.org/0000-0002-3328-317X</orcidid><orcidid>https://orcid.org/0000-0001-5807-9215</orcidid></search><sort><creationdate>20061013</creationdate><title>Slippage of water past superhydrophobic carbon nanotube forests in microchannels</title><author>Joseph, P ; Cottin-Bizonne, C ; Benoît, J-M ; Ybert, C ; Journet, C ; Tabeling, P ; Bocquet, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed Matter</topic><topic>Fluid Dynamics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, P</creatorcontrib><creatorcontrib>Cottin-Bizonne, C</creatorcontrib><creatorcontrib>Benoît, J-M</creatorcontrib><creatorcontrib>Ybert, C</creatorcontrib><creatorcontrib>Journet, C</creatorcontrib><creatorcontrib>Tabeling, P</creatorcontrib><creatorcontrib>Bocquet, L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, P</au><au>Cottin-Bizonne, C</au><au>Benoît, J-M</au><au>Ybert, C</au><au>Journet, C</au><au>Tabeling, P</au><au>Bocquet, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slippage of water past superhydrophobic carbon nanotube forests in microchannels</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2006-10-13</date><risdate>2006</risdate><volume>97</volume><issue>15</issue><spage>156104</spage><epage>156104</epage><pages>156104-156104</pages><artnum>156104</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present in this Letter an experimental characterization of liquid flow slippage over superhydrophobic surfaces made of carbon nanotube forests, incorporated in microchannels. We make use of a particle image velocimetry technique to achieve the submicrometric resolution on the flow profile necessary for accurate measurement of the surface hydrodynamic properties. We demonstrate boundary slippage on the Cassie superhydrophobic state, associated with slip lengths of a few microns, while a vanishing slip length is found in the Wenzel state when the liquid impregnates the surface. Varying the lateral roughness scale L of our carbon nanotube forest-based superhydrophobic surfaces, we demonstrate that the slip length varies linearly with L in line with theoretical predictions for slippage on patterned surfaces.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>17155344</pmid><doi>10.1103/PhysRevLett.97.156104</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2793-7229</orcidid><orcidid>https://orcid.org/0000-0002-3328-317X</orcidid><orcidid>https://orcid.org/0000-0001-5807-9215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2006-10, Vol.97 (15), p.156104-156104, Article 156104
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01628755v1
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Condensed Matter
Fluid Dynamics
Physics
title Slippage of water past superhydrophobic carbon nanotube forests in microchannels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slippage%20of%20water%20past%20superhydrophobic%20carbon%20nanotube%20forests%20in%20microchannels&rft.jtitle=Physical%20review%20letters&rft.au=Joseph,%20P&rft.date=2006-10-13&rft.volume=97&rft.issue=15&rft.spage=156104&rft.epage=156104&rft.pages=156104-156104&rft.artnum=156104&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.97.156104&rft_dat=%3Cproquest_hal_p%3E68238331%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-16665860716b849d33fbb12bd0f66d9a4448e6e8fa5a952e5256edb009b6a74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68238331&rft_id=info:pmid/17155344&rfr_iscdi=true