Loading…

Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems

This work presents a direct extension of the multiscale GFEM (MS-GFEM) where damage and fracture mechanisms are now taken into account. Using a pattern-based description of the microscale, the construction of the model falls into two main parts: the modeling of a multiphase composite yarn, and the m...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2017-03, Vol.164, p.145-157
Main Authors: Friderikos, Orestis, Baranger, Emmanuel, Ladevèze, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13
cites cdi_FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13
container_end_page 157
container_issue
container_start_page 145
container_title Composite structures
container_volume 164
creator Friderikos, Orestis
Baranger, Emmanuel
Ladevèze, Pierre
description This work presents a direct extension of the multiscale GFEM (MS-GFEM) where damage and fracture mechanisms are now taken into account. Using a pattern-based description of the microscale, the construction of the model falls into two main parts: the modeling of a multiphase composite yarn, and the modeling of crack events inside the microstructure. The classical difficulties associated with the implementation and computation cost of the GFEM are dealt through a multiscale approach based on the Saint–Venant principle. This multiscale vision enables the microstructure and the microkinematics to be handled on the scale of the pattern independently of the macroscale discretization. Additionally, numerical enrichment functions are superimposed between the existing enrichment functions in a local computational domain. These enrichment functions deliver accurate solutions of crack interactions among local features, like inclusions, voids, etc, and are specifically appealing to evolution type problems like the crack events defined under the finite fracture mechanics framework. Different crack patterns can be introduced at different positions in the global domain when certain fracture criteria are met. The multiscale approach is implemented inside the finite element software Cast3M in order to use the existing infrastructure of the object oriented code for the development of MS-GFEM.
doi_str_mv 10.1016/j.compstruct.2016.10.039
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01630715v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822316312685</els_id><sourcerecordid>S0263822316312685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhU1podO076BtoJ5Iljy2u0tD_mBCN-laSFfXWBNbMpI8ZR6jb1w5U5plVxfO_c7hSqcoCKNbRtnu6rAFP80xhQXStspKlreUd--KDWubrmS0rd8XG1rteNlWFf9YfIrxQCltBWOb4vfTMiYbQY1I7u9un8gvmwYSlxnD7KNN1jviewJBwQtBFywME7pE-sXBuozEBHtER_SJ9NbZhKTPbFoCkglhUM5C_EaeB_Th9DUjISayXrwk9RqunCF-zgFz8HrEKX4uPvRqjPjl77woft7dPt88lPsf94831_sSeF2lslNGq64FwbioawaaGw2V0LoGISqlmo5p3YBuTMVQ8V3VtYZy0bYCGArD-EVxec4d1CjnYCcVTtIrKx-u93LV8l9y2rD6uLLtmYXgYwzY_zMwKtca5EG-1SDXGtZNriFbv5-tmN9ytBhkBIsO0NiAmTXe_j_kDyoImkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems</title><source>ScienceDirect Freedom Collection</source><creator>Friderikos, Orestis ; Baranger, Emmanuel ; Ladevèze, Pierre</creator><creatorcontrib>Friderikos, Orestis ; Baranger, Emmanuel ; Ladevèze, Pierre</creatorcontrib><description>This work presents a direct extension of the multiscale GFEM (MS-GFEM) where damage and fracture mechanisms are now taken into account. Using a pattern-based description of the microscale, the construction of the model falls into two main parts: the modeling of a multiphase composite yarn, and the modeling of crack events inside the microstructure. The classical difficulties associated with the implementation and computation cost of the GFEM are dealt through a multiscale approach based on the Saint–Venant principle. This multiscale vision enables the microstructure and the microkinematics to be handled on the scale of the pattern independently of the macroscale discretization. Additionally, numerical enrichment functions are superimposed between the existing enrichment functions in a local computational domain. These enrichment functions deliver accurate solutions of crack interactions among local features, like inclusions, voids, etc, and are specifically appealing to evolution type problems like the crack events defined under the finite fracture mechanics framework. Different crack patterns can be introduced at different positions in the global domain when certain fracture criteria are met. The multiscale approach is implemented inside the finite element software Cast3M in order to use the existing infrastructure of the object oriented code for the development of MS-GFEM.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2016.10.039</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Finite fracture mechanics ; Handbook problems ; Mechanics ; Mechanics of materials ; Multiscale generalized finite element method ; Physics</subject><ispartof>Composite structures, 2017-03, Vol.164, p.145-157</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13</citedby><cites>FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13</cites><orcidid>0000-0003-2995-5196 ; 0000-0001-6295-9776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01630715$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Friderikos, Orestis</creatorcontrib><creatorcontrib>Baranger, Emmanuel</creatorcontrib><creatorcontrib>Ladevèze, Pierre</creatorcontrib><title>Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems</title><title>Composite structures</title><description>This work presents a direct extension of the multiscale GFEM (MS-GFEM) where damage and fracture mechanisms are now taken into account. Using a pattern-based description of the microscale, the construction of the model falls into two main parts: the modeling of a multiphase composite yarn, and the modeling of crack events inside the microstructure. The classical difficulties associated with the implementation and computation cost of the GFEM are dealt through a multiscale approach based on the Saint–Venant principle. This multiscale vision enables the microstructure and the microkinematics to be handled on the scale of the pattern independently of the macroscale discretization. Additionally, numerical enrichment functions are superimposed between the existing enrichment functions in a local computational domain. These enrichment functions deliver accurate solutions of crack interactions among local features, like inclusions, voids, etc, and are specifically appealing to evolution type problems like the crack events defined under the finite fracture mechanics framework. Different crack patterns can be introduced at different positions in the global domain when certain fracture criteria are met. The multiscale approach is implemented inside the finite element software Cast3M in order to use the existing infrastructure of the object oriented code for the development of MS-GFEM.</description><subject>Finite fracture mechanics</subject><subject>Handbook problems</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Multiscale generalized finite element method</subject><subject>Physics</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhU1podO076BtoJ5Iljy2u0tD_mBCN-laSFfXWBNbMpI8ZR6jb1w5U5plVxfO_c7hSqcoCKNbRtnu6rAFP80xhQXStspKlreUd--KDWubrmS0rd8XG1rteNlWFf9YfIrxQCltBWOb4vfTMiYbQY1I7u9un8gvmwYSlxnD7KNN1jviewJBwQtBFywME7pE-sXBuozEBHtER_SJ9NbZhKTPbFoCkglhUM5C_EaeB_Th9DUjISayXrwk9RqunCF-zgFz8HrEKX4uPvRqjPjl77woft7dPt88lPsf94831_sSeF2lslNGq64FwbioawaaGw2V0LoGISqlmo5p3YBuTMVQ8V3VtYZy0bYCGArD-EVxec4d1CjnYCcVTtIrKx-u93LV8l9y2rD6uLLtmYXgYwzY_zMwKtca5EG-1SDXGtZNriFbv5-tmN9ytBhkBIsO0NiAmTXe_j_kDyoImkA</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Friderikos, Orestis</creator><creator>Baranger, Emmanuel</creator><creator>Ladevèze, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2995-5196</orcidid><orcidid>https://orcid.org/0000-0001-6295-9776</orcidid></search><sort><creationdate>20170315</creationdate><title>Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems</title><author>Friderikos, Orestis ; Baranger, Emmanuel ; Ladevèze, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Finite fracture mechanics</topic><topic>Handbook problems</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Multiscale generalized finite element method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friderikos, Orestis</creatorcontrib><creatorcontrib>Baranger, Emmanuel</creatorcontrib><creatorcontrib>Ladevèze, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friderikos, Orestis</au><au>Baranger, Emmanuel</au><au>Ladevèze, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems</atitle><jtitle>Composite structures</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>164</volume><spage>145</spage><epage>157</epage><pages>145-157</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This work presents a direct extension of the multiscale GFEM (MS-GFEM) where damage and fracture mechanisms are now taken into account. Using a pattern-based description of the microscale, the construction of the model falls into two main parts: the modeling of a multiphase composite yarn, and the modeling of crack events inside the microstructure. The classical difficulties associated with the implementation and computation cost of the GFEM are dealt through a multiscale approach based on the Saint–Venant principle. This multiscale vision enables the microstructure and the microkinematics to be handled on the scale of the pattern independently of the macroscale discretization. Additionally, numerical enrichment functions are superimposed between the existing enrichment functions in a local computational domain. These enrichment functions deliver accurate solutions of crack interactions among local features, like inclusions, voids, etc, and are specifically appealing to evolution type problems like the crack events defined under the finite fracture mechanics framework. Different crack patterns can be introduced at different positions in the global domain when certain fracture criteria are met. The multiscale approach is implemented inside the finite element software Cast3M in order to use the existing infrastructure of the object oriented code for the development of MS-GFEM.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2016.10.039</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2995-5196</orcidid><orcidid>https://orcid.org/0000-0001-6295-9776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2017-03, Vol.164, p.145-157
issn 0263-8223
1879-1085
language eng
recordid cdi_hal_primary_oai_HAL_hal_01630715v1
source ScienceDirect Freedom Collection
subjects Finite fracture mechanics
Handbook problems
Mechanics
Mechanics of materials
Multiscale generalized finite element method
Physics
title Multiscale GFEM with superposition of crack enrichment functions driven by finite fracture mechanics: Theory, first computation and open problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20GFEM%20with%20superposition%20of%20crack%20enrichment%20functions%20driven%20by%20finite%20fracture%20mechanics:%20Theory,%20first%20computation%20and%20open%20problems&rft.jtitle=Composite%20structures&rft.au=Friderikos,%20Orestis&rft.date=2017-03-15&rft.volume=164&rft.spage=145&rft.epage=157&rft.pages=145-157&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2016.10.039&rft_dat=%3Celsevier_hal_p%3ES0263822316312685%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-9adba98c4134551cb3dbc24bb5c442aa791bb7cb7d21ea36298d034884c1e4d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true